

CHELIC_® AUTOMATION

PNEUMATIC EUIQPMENT

The Keystone of Industrial 4.0

Selection/Installation Precautions; Operation and Maintenance

Warrant Period and Scope

• Warrant Period

Warrant period shall be any of the follows that comes first.

The Warrant Period is:

- 1.12 months after installation.
- 2.18 months after delivery from our plant.
- 3.2500-hour operation

Scope of warrant

We will be responsible for free of charge repair for any product fault under normal operation during the Warrant Period except for the following items:

1. Flaking off of external coating or natural discoloration.

2.Replacement of consumables.

3.Damage resulting from earthquake, storm, flood, lightening, fire or other calamity or human error.

4.Improper installation or use by the user.

5. Arbitrary modification of product without the consent of our company.

6.Using lubricant or grease other than that specified by the company.

7. Incomplete or erroneous maintenance and inspection.

8. Repairs done by third-party other than our authorized dealer.

Furthermore, we are only responsible for repairing our own products; we shall not be held responsible for any damage resulting from the faulty product.

Precautions

Safety Precautions for using CHELIC Products

For safely using the product, carefully read Safety Precautions and Operation Manual before selecting model and using the product. These Safety Precautions aim to prevent any injury caused by erroneous use of the product. Make sure you fully understand and observe precautions and markings given in the Operation Manual.

1.Safety Notes

Industrial products are the machinery having high-level of procedure design and extensive freedom of movements. In order to use CHELIC products safely, the following safe relevant notes must be observed. Failure to take necessary safety measures or erroneous operation may result in faults or damage of the product, or even injury, death or major incident of the user (including ones who install, operate, adjust, or check the product).

Incorrect operation may lead to death or severe injury.

WARNING

> Incorrect operation may lead to death or severe injury.

CAUTION

> Incorrect operation may lead to injury or damage of objects.

IMPORTANT

> Description of product operation sequence.

Operation Manual cannot describe all the details of the safety issues; the user is required to observe these precautions for building up correct safety awareness and judging capabilities. Refer to product layout given in this booklet for product positions, basic rules for use, and specifications. Furthermore, warning signs and Operation Manual of the product is for the use in Taiwan area only. For exporting overseas, alterations must be made for the warning signs and the Operation Manual.

2.Special Precautions

The follows are important precautions on product operation. Further notes regarding installation, operation, checking and maintenance are given in respective chapters. All these notes require strict observation.

Selection/Installation Precautions; Operation and Maintenance

(1)Notes on Automation

1.Safety Fence must be installed for preventing the operator getting injured by contacting moving parts of the product when entering its range of movement.

2.Interlocking device for Open and Emergency Stop must be provided at the entrance of Safety Fence.

3. Avoid as far as possible accessing the machine via other positions than the entrance with the interlock device.

Severe injury may occur if getting contact with operating product.

- Do not enter the Safety Fence during an automated operation.
- For entering the Safety Fence, push down the Emergency Stop Button.

(2) Prevent from Pinch of Hand

Pay attention to avoid the hand from being pinched by moving parts when operating the product.

Pinch of Hand may occur. Do not reach your hand close to moving parts. Keep distance from moving parts of product.

(3) Operation Instructions

1.Peruse Operation Manual before installing the product. Carry out tasks and operation as instructed.

2. After perusing Operation Manual, also read Safety Precautions for using CHELIC Products before operating the product.

3.Do not carry out any installation, checking, maintenance, or operation item not described in the Operation Manual.

WARNING

Server injury may occur if product is incorrectly installed or operated. Peruse Operation Manual before installation/operation.

(4) Using the product in environments with flammable gas is strictly forbidden.

1. This product is not explosion proof.

2.Do not use the product in environments with flammable gas, powder, or liquid, otherwise an explosion or fire may occur.

(5) Never use the product in environments with potential of electromagnetic influence hazards.

Do not use the product in hazardous environments having electromagnetic influence, static discharge, or radio wave influences. Erroneous operation of the product may cause dangers.

(6) Cautions for checking Controller

WARNING

 To prevent electrocution, cut off power supply of the controller and power mains when carrying out checks of the controller, external contactor terminals and wiring posts.
 Never touch the internal of controller.

(7) Handing Damages and Anomalies of Product

It is dangerous to use the product in damaged or abnormal conditions; Stop use immediately and contact our company.
 Timing Belt, Timing Wheel Belt, Warm Gear, and Warm Screw are consumables; of which annual replacement is recommended.

(8) Cautions for touching high-temperature points on Motor and Reducer Box

Automated motor and reducer box may reach very high temperatures that will result in burn injury if touched. When checking the contactor, always cut off power supply of the controller. Temperature lowers as time goes by; make contact only when the temperature is lowered.

Warrant and Caution
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

(9)It is strictly forbidden to remove, alter or damage any warning sign

WARNING

Arbitrary removal of a warning sign may result in incidents due to not seeing the warning.
 Avoid blockage of a warning sign on the product by a near-by machine.
 Make sure the graph and text of the warning sign can be clearly seen from outside the Safety Fence.

(10)Protective Connection

WARNING

To avoid static charge, always connect the product and controller to Ground.

(11) Pay attention to Parameter Settings

WARNING

To allow inertial factor and tip mass, product movement shall be maintained at proper acceleration. Failure to do so may result in premature lifespan expiry of moving parts, damages, and residual vibration during alignment.

3.Safety Functions of Product

(1)Overload Detection

Detect motor overload and cut off servo power supply.

(2) External Limit

Under SENSOR states of axes and external limits, Movement Range of manual operation and automated operation is limited after Homing. Furthermore, the limited area based on external SENSOR is called Movement Range.

(3) Mechanical Blocks

Mechanical Block is installed for the prevention of exceeding Movement Range of an Axis, allowing emergency stop and safety functions when cutting off servo power supply at high-speed motion; no Mechanical Block is provided for axis return. The area limited by Mechanical Block is also called moving range.

WARNING

A moving axis cannot be stopped immediately with the operation of emergency stop or safety function, this is why the installation (of Mechanical Stops), therefore pay special attention.

4.System Safety Measures

Compared to Electrical Slide units, assembling an automated system with built-in Electrical Slide(s) is more likely to cause system hazards. For system manufacturers, it is necessary to adopt safety measures that match with respective systems. The system manufacturer must properly operate relevant measures regarding system safety, operation, and maintenance.

5.Test Run

Carry out Test Run in the following sequence after installation, adjustment, check, maintenance, repair, etc. of the robot.

(1)No safety fence prepared after installation

Provide extended cable and locks outside the Movement Range in lieu of a Safety Fence; strictly observe the following items:

1. Props must be hard to move.

2. Easy to recognize from the outside.

3. Set up "No Entry; In Operation" signage at easy to see location; the operator shall be restricted to enter a Movement Range.

(2)Verifications before plugging-in the Controller

1. Proper product installation

- 2. Proper electrical installation
- 3.Proper connection with Ground
- 4. Proper connection with the product

5.Whether safety measures (Safety Fence, etc.) are in place.

6.Whether installation environment complies with specifications.

Selection/Installation Precautions; Operation and Maintenance

(3) Verifications after plugging-in the Controller

Verify the follows after plugging-in the Controller:

- 1. Check normal operation of Start, Stop, and Mode Selection buttons.
- 2.Check software limits by turning respective axes.
- 3.Check the final result for compliance with the plan.
- 4. Check for normal signal exchange with final results and peripheral machines.
- 5.Check Emergency Stop for normal function.
- 6.Check Teach Pendant (or, Demonstrator) for normal function.
- 7. Check Safety Protection and connection device for normal function.
- 8.Check for proper movement in automated operation.

6.Operation inside the Safety Fence

(1)Operation inside the Safety Fence

Except for the following exceptions, always cut off controller power supply when operating inside the Safety Fence; explicit marking shall be provided during the work to ensure no other operator will turn on the power of the controller or the operation panel. 1.Setting of external Limit Sensors

2.Teach demo.

Take precautions in the following order during the operation.
 Refer to (II) below.

(2)Teach

Take the following procedures for teaching inside the Safety Fence: 1.Verify the following items from outside the Safety Fence:

- 1.Visually verify if there is any danger inside the Safety Fence.
- 2.Whether the hand-held programmer is working normally.
- 3.Check the product for any fault.
- 4. Check Emergency Stop Device for normal operation.

5. Automated operation is prohibited in Demonstrator Mode.

2.Never enter the Movement Range of the Robot Arm (Safety Hood)

7.Automation

(1)Verifications before Operation

Verify the following items before operation:

1.No one is inside the Safety Fence.

2.Holding Demonstrator or tool at specified position.

3. Whether anomalies of the product and peripheral machines are displayed with indicators.

4. Whether Safety Fence is set and interlocking function is working.

(2) During operation and when anomaly occurs

1. When operation starts, verify the operation status and automation via indicators.

2. Entering into Safety Fence is absolutely forbidden during the operation.

3.In the event of an anomaly of machine or peripheral machines, take the following procedures for entering into Safety Fence:

1. Press down Emergency Stop Button to stop the product.

2. Indicate on the Power Switch that emergency measures are taken; take necessary measures to prevent anyone other than the operator to operated the product.

8.Adjustment and Checking

Do not carry out any installation, adjustment, checking, maintenance, etc. not described in the Operation Manual.

9.Repair and Modification

Repair, part replacement and modification are not listed in this Operation Manual. These tasks must be carried out by professionals. Do not attempt to do them arbitrarily or danger may occur.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation

Instructions

Product Index

Powerful Functionality and Comprehensive Specifications

Mechanical Grippers, Electric Cylinders and Linear Motor Modules developed by CHELIC are indispensable products for the automation equipment due to their powerful functions, comprehensive specifications, high-quality, and competitive price.

P.7

2-Finger Electric Gripper

CHELIC.

2 Eingor	Pound Pody	Electric Cripper				D D D	Warrant and Caution
S-Filiger	Round Body	Electric Gripper				P.23	Product Index
		Maria ataraka 10aran	EDO 12		Mary studies 14mm	_	EDG
EDQ 25		Max. stroke 10mm Max.Gripping force 22N	EDQ 42		Max. stroke 14mn Max.Gripping ford	n :e 102N	EDF
	~	Motor size 25 🗆			Motor size 42 🗆		EDM
							EDP
Flectric	Slide Table					P.47	EDQ
Small size							EDX
EDX 16	A CONTRACTOR	Max. stroke 100mm					EDK
		Max. thrust 466N/233N					EQX
	a de	Motor Size 25 L					ETB
Electric	slide Table/0	non loon					Product Application Examples
Electric	Silde Table/O	pen-toop				P.23	P-SERVO
							Operation Instructions
EDK 25		Strokes25, 50, 75, 100mm Max_thrust 20N	EDK 30		Strokes25, 50, 75, Max_thrust 60N	,100mm	
		Motor size 25 (PM)			Motor size 36 (PM)	
Electric	Actuator					P.59	
Small size		Max stroke 100mm					
EQX 10	and the second s	Position repeatability ±0.02	2mm				
		Motor size 25 ロ					
Electric	Rotary Table					P.71	
Small size			Large size				
ETB 10	1.00	Max. angles 330°	ETB 50		Max. angles 330°		
		Motor size 20 🗆			Motor size 42 🗆		
Middle size							
ETB 30	1° ° .	Max. angles 330°					
		Max. load 50N Motor size 25 □					
P-SERV	O Closed-loop	o stepping moto	or servo	system		P.83	
Small size	-						
	onelle	CH	Voltage 2 Rated Cu	24V DC			
	Lucha and and	P-SERVO	Close Lo	op Driver			
	and the second	the state					7

EDG20/EDG25/EDG35/EDG42

Aluminum shell Large heat dissipation

Worm

Close-loop motor Feedback signal

Self-lock mechanism

Worm gear Force endurance during start and stop

High precision roller slide Repeating accuracy ± 0.02 mm

Multiple mounting way

Warrant and Cautions
Product Index

EDF EDM

EDP

EDQ

EDX EDK EQX ETB

Product Application Examples P-SERVO

Operation

Instructions

EDG series 2-Finger Electric Gripper

EDG20/EDG25/EDG35/EDG42

Small size EDG 20

Max. stroke 8mm						
Max. gripping force 14N						
Motor size 20 ロ						
Motor size 20 🗆						

Middle size EDG 25

Max. stroke 14mm Max. gripping force 80N Motor size 25 □

Max. stroke 22mm Max. gripping force 140N Motor size 35 □

Large size

EDG 42

Max. stroke 30mm Max. gripping force 220N Motor size 42 □

Gripper Specifications

Gripper (EDG, EDF) is used in combination with jig for opening object.

1.Verify actual gripping force
 2.Verify gripping point
 3.Verify external force exerted on the Gripper

If safety factor is a, then F is:

- x2 (safety value)

F> mg

μ

- F: Gripping force (N)
- $\boldsymbol{\mu} :$ Friction coefficient between accessory and workpiece
- m: Mass of workpiece
- g: Acceleration of gravity (=9.8m/s²)
- mg: Weight of workpiece

Gripper Specifications

EDG 35

EDG 42

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Spec	Allowable	Max. Allowable Loading Moment (Nm)			
	Vertical Load F (N)	Ма	Mb	Мс	
EDG 20	60	0.5	0.5	1.5	
EDG 25	356	1.9	2.7	4.6	
EDG 35	558	3.8	5.5	9.5	
EDG 42	651	5.1	7.2	12.4	

Sequence of Model Selection

Demonstration of Gripping Force

The figure below shows the gripping force is applied by the complete touch by the two grippers, annex and workpiece, which is represented by F.

Curve Graph of Gripping Force and Gripping Point

EDG 20 **EDG 35** Precision of Gripping Force: ±25% (F.S) Precision of Gripping Force: ±25% (F.S) 20 160 Gripping Force F (N) Gripping Force F (N) Gripping Force at 70% 16 Gripping Force at 70% 120 12 80 8 40% 40% 40 4 0 0 0 20 40 60 50 100 150 200 80 0 Gripping point L (mm) Gripping point L (mm) EDG 42 **EDG 25** Precision of Gripping Force: ±25% (F.S) Precision of Gripping Force: ±25% (F.S) 250 100 Gripping Force F (N) Gripping Force F (N) Gripping Force at 70% 80 Gripping Force at 70% 200 60 150 40% 40 100 40% 20 50 0 0 20 100 120 40 60 80 140 50 100 200 0 0 150 Gripping point L (mm) Gripping point L (mm)

• Gripping force is an input vale of the drive information.

Setup of Gripping Speed

• Please use the fundamental model within the range designated in the figure below when setting the gripping force and critical value.

· Working Position of Grip: L; please perform it within the range designated in the figure below.

250

250

Sequence of Model Selection

Seq 2 Confirmation of Gripping Point and Outward Extension

- Gripping Position and Outward Extension of Workpiece: H please perform it within the range designated in the figure below.
- If the gripping position exceeds the range of limitation, the service life of the electric gripper will be impacted.

Basic Type · Thrust force is an input value of the controller step position information.

Seq 3 Confirm the utmost external force used in the fingers

Mr: Reverse Torque

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation

Fv: Vertical Allowable Load

Mp Mp: Axial Bending Moment

My: Biased Torque

Calculation of Allowable External Force (when bearing load torque)	Example
$\begin{array}{l} M \text{ (Allowable Static Torque)} \\ \text{Allowable} & (N \cdot m) \\ \text{Load F (N)} = & \underbrace{(N \cdot m)}_{L \text{ x } 10^{\cdot 3}} \\ \end{array}$ *Definite Number of Conversion of Units	The axial bending moment generated by the static load at f=10N when the guide rail of EDG20 is reaching L=30mm can be used. Allowable Load F = $\frac{0.68}{30 \times 10^3}$ = 22.7(N) Load f = 10(N) < 22.7(N)

Madal	Vertical Load	Allowable Static Torque					
woder	Fv (N)	Axial Bending Moment: Mp (N·m)	Biased Torque: My (N·m)	Reverse Torque: Mr(N·m)			
EDG 20	60	0.5	0.5	1.5			
EDG 25	356	1.9	2.7	4.6			
EDG 35	558	3.8	5.5	9.5			
EDG 42	651	5.1	7.2	12.4			

Feature, Specification and Code of Order

- Feature:
 - Worm Gear Drive
 - Signal and Feedback
 - High Precision

The picture is for reference only. Please be subject to the specification table.

Specification

Use occasion	Model	Gripping force	Gripper stroke	Max speed	Actuation type	Ambient and fluid temperature	Operating humidity range	Motor size	Position repeatability	Finger backlash (one side)	Idling stroke (one side)	Weight
General environment	EDG 20	14	8	62.8	Worm + Double- helical + Helical rack gears		20 🗆		0.2	0.05	0.3	
	EDG 25	80	14	78.5		5 ~ 40) 35 ~ 85	25 🛛	+0.02	0.3		0.5
	EDG 35	140	22	125		+ Helical rack gears			35 🗆	_0102	0.4	0.15
	EDG 42	220	30	157				42 🛛		0.4		1.4

Remark 1. Idling stroke:Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Code of Order

1

EDG - 20 - 03 - P

Mark	Туре	2	Mark	Wire length	3	Mark	Actuator	
20	20		01	1 m		Р	P-Servo	
25	25		03	3 m		* Standard	component Ref	er to page 83
35	35		05	5 m				
42	42		10	10 m				
			Standard	- 3M	1			

Gripping force-current value graph, Side mounting, Bottom mounting

Internal structure, Components and Material list

EDG20

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	14	Motor Adapter Plate	Aluminum alloy
02	Finger	Stainless	15	Shell	Aluminum alloy
03	Finger	Stainless	16	Base	Aluminum alloy
04	Finger Plate Fixing Pin	-	17	Ball Stop Fixing Screw	Alloy steel
05	Finger Plate Roller	-	18	Motor Fixing Screw	Alloy steel
06	Roller block	Stainless	19	Motor Set Screw	Alloy steel
07	Worm gear	Stainless	20	Adapter Plate Fixing Screw	Alloy steel
08	Shaft	Stainless	21	Body Fixing Screw	Alloy steel
09	Shaft Clip Ring	-	22	Bottom Plate Fixing Screw	Alloy steel
10	Shaft Spring Pin	-	23	Finger Plate Holder	Stainless
11	Close-loop Motor	РОМ	24	Finger Plate Holder Fixing Screw	Alloy steel
12	Axial Bearing	Bearing steel	25	Wire Cover Plate	Stainless
13	Gear shaft	Customized	26	Wire Cover Plate Fixing Screw	Alloy steel

Internal structure, Components and Material list

EDG25, EDG35, EDG42

Warrant and Cautions					
Product Index					
EDG					
EDF					
EDM					
EDP					
EDQ					
EDX					
EDK					
EQX					
ETB					
Product Application Examples					
P-SERVO					
Operation Instructions					

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	13	Close-loop Motor	Customized
02	Finger	Stainless	14	Motor Adapter Plate	Aluminum alloy
03	Finger	Stainless	15	Shell	Aluminum alloy
04	Finger Plate Fixing Pin	-	16	Base	Aluminum alloy
05	Finger Plate Roller	-	17	Ball Stop Fixing Screw	Alloy steel
06	Roller block	Stainless	18	Motor Fixing Screw	Alloy steel
07	Ball screw	Stainless	19	Motor Set Screw	Alloy steel
08	Shaft	Stainless	20	Adapter Plate Fixing Screw	Alloy steel
09	Shaft Clip Ring	-	21	Body Fixing Screw	Alloy steel
10	Shaft Spring Pin	-	22	Bottom Plate Fixing Screw	Alloy steel
11	Gear shaft	POM	23	Finger Plate Holder	Stainless
12	Radial bearing	Bearing steel	24	Finger Plate Holder Fixing Screw	Alloy steel

External dimensions

EDG20

Unit:mm

Unit:mm

Warrant and Cautions

Product Index

EDG series 2-Finger Electric Gripper

External dimensions

EDG25

External dimensions

EDG35

Unit:mm

Unit:mm

EDG series 2-Finger Electric Gripper

External dimensions

EDG42

Warrant and Cautions							
Product Index							
EDG							
EDF							
EDM							
EDP							
EDQ							
EDX							
EDK							
EQX							
ETB							
Product Application Examples							
P-SERVO							
Operation Instructions							

EDF series 2-Finger Electric Gripper /Long Stroke

EDF20/EDF32

Aluminum shell Large heat dissipation

Close-loop motor Feedback signal

High precision roller slide Repeating accuracy ± 0.05 mm

Worm, Worm gear Self-lock mechanism Force endurance during start and stop

EDF 32

Gripping force accuracy: ±30% (F.S.)

Gripping Point L(mm)

Warrant and Cautions
Product Index
EDG

EDM

EDP

EDQ EDX EDK EQX ETB

Product Application Examples

P-SERVO

Operation Instructions

EDF series 2-Finger Electric Gripper /Long Stroke

EDF20/EDF32

Small size EDF 20

Gripping force 46N Open/close speed(mm/s) 0~50mm/s Motor size 25 □

Gripping force 142N Open/close speed(mm/s) 0~50mm/s Motor size 42 □

Gripping point-Outward Extension graph

- 1) Gripping Position and Outward Extension of Workpiece:H please perform it within the range designated in the figure below.
- 2) If the gripping position exceeds the range of limitation, the lifetime of electric gripper will be impacted.

Seq 1 Confirm the gripping force

• Demonstration of Gripping Force

The figure below shows the gripping force is applied by the complete touch by the two grippers, annex and workpiece, which is represented by F.

• Working Position of Grip L: please perform it within the range designated in the figure below.

• Selection of Gripping Speed

Please follow the range designated in the figure below to set the gripping force and critical value. Range of Gripping Force and Critical Value

Sequence of Model Selection

Seq 2 Confirmation of Gripping Point and Outward Extension

• Gripping Position and Outward Extension of Workpiece: H - please perform it within the range designated in the figure below.

If the gripping position exceeds the range

of limitation, the service life of electric

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Seq 3 Confirm the external force applied on the slider

EDF series 2-Finger Electric Gripper /Long Stroke

Feature, Specification and Code of Order

- Feature:
 - Timing Belt Transmission
 - Signal and Feedback
 - High Precision

The picture is for reference only. Please be subject to the specification table.

Specification

Use	Model	Gripper stroke		Lead	ad Gripping O	Open/close	Position	Drive	Ambient and fluid	Operating humidity	Motor	Finger backlash/	Idling	load
occasion		Basic	Long stroke	(mm)	(N) (mm/s)		mode	temperature	range (%)	size	one side (mm)	(mm)	(kg)	
General environment	EDF 20	24	48	1	46	0 - 50	.0.05	Worm wheel+ Belt drive	5~40	35 ~ 85	25 🗆	0.5	0.3	0.6 (Basic) 0.8 (Long stroke)
	EDF 32	32	64	1.25	142	0.230	10.00				42 🗆	or less	or less	1.6 (Basic) 2.0 (Long stroke)

Remark 1. Idling stroke:Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Code of order

EDF series 2-Finger Electric Gripper /Long Stroke

Gripping force-current value graph, Side mounting, Plate mounting, Bottom mounting

EDF 20

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	09	Cushion	РОМ
02	Ball screw	Alloy steel	10	Timing belt pulley/5AF	Customized
03	Internal thread sleeve	Alloy steel	11	Timing belt pulley/5A	Customized
04	Action fixing block	Stainless	12	Timing belt	Customized
05	Stopper	Stainless	13	Closed loop motor	Customized
06	Cabel stopper	Stainless	14	Outlet rubber	Rubber
07	Motor fixing plate	Stainless	15	Bearing	Customized
08	Sleeve fixing piece	Stainless	16	Slider wirh slide base	Stainless

EDF series 2-Finger Electric Gripper /Long Stroke

Internal structure, Components and Material list

EDF 32

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation

Components and Material list

No.	Name	Material No.		Name	Material
01	Body	Aluminum alloy	09	Cushion	РОМ
02	Ball screw	Alloy steel	10	Timing belt pulley/5AF	Customized
03	Internal thread sleeve	Alloy steel	11	Timing belt pulley/5A	Customized
04	Action fixing block	Stainless	12	Timing belt	Customized
05	Stopper	Stainless	13	Closed loop motor	Customized
06	Cabel stopper	Stainless	14	Outlet rubber	Rubber
07	Motor fixing plate	Stainless	15	Bearing	Customized
08	Sleeve fixing piece	Stainless	16	Slider wirh slide base	Stainless

External dimensions

EDF 20

Unit:mm

size(mm)	А	В	С	Ν
EDF 20x24	35.8	12	81.5	24
EDF 20x48	53.8	18	110	48

34

Warrant and Cautions

EDF series 2-Finger Electric Gripper /Long Stroke

External dimensions

EDF 32

size(mm)	А	В	С	Ν
EDF 32x32	49.5	29	105	32
EDF 32x64	72.5	37	145	64

EDM series Angular Type Electric Gripper

EDM20/EDM25/EDM35/EDM42

36
Warrant and Cautions
Product Index
EDG

EDF EDM

EDP EDQ EDX EDK EQX ETB Product Application

Examples P-SERVO

Operation

Instructions

EDM series Angular Type Electric Gripper

EDM20/EDM25/EDM35/EDM42

Small size EDM 20

Max. angles 180°
Max. gripping force 6.4N
Motor size 20 ロ

Max. angles 180° Max. gripping force 25N Motor size 25 □

Max. angles 180° Max. gripping force 60N Motor size 35 ロ

Max. angles 180° Max. gripping force 100N Motor size 42 □

· Model should be selected based on 10 to 20 times of the

weight of the workpiece according to the diverse COFs and

· Additionally, considering the acceleration and impact force when transporting the workpiece, an SF must be established.

% For further details, please refer to the calculation of

shapes of the annexes and workpieces.

Confirm the external force applied on the rotary gripper

Seq 1 Confirm the gripping force

Example

Mass of

Workpiece: 0.2kg

The gripping force is Conditions therefore calculated by Confirmed

gripping force.

Choose the model throug the gripping force chart

Selection of Touch Speed

Ex. The required gripping force=0.2kg x 20 x 9.8m²/s ≒ 39.2N at least, if the gripping force is set for above 20 times the weight of the workpiece.

The gripping force is therefore calculated by

Gripping a workpiece, as shown in the left figure F : Gripping Force (N) µ : COF between Annex and Workpiece m : Mass of Workpiece (kg) g : Acceleration of Gravity (=9.8m/s) mg : Weight of Workpiece (N)

The condition that workpiece does not fall $F\mu > mg$ mg Hence F > и Provided SF is a, then F is

mg хa

μ

About "10 to 20 Times above the Weight of Workpiece"

The data "10 to 20 Times above the Weight of Workpiece" recommended by the Company is calculated through the impact force during transport when SF=4

µ= 0.2	μ= 0.1			
$F = \frac{mg}{2 \times 0.2}$ x 4 = 10 x mg	$F = \frac{mg}{2 \times 0.1} \times 4 = 20 \times mg$			
1	1			
10 Times the Weight of Workpiece	20 Times the Weight of Workpiece			

<Reference>COF µ (variable depending on different usage environments or surface pressure)

COF µ	Material Quality of Annex and Workpiece (standard)
0.1	Metal (surface roughness Rz is under 3.2)
0.2	Metal
Above 0.2	Rubber, Resin, etc.

 \bullet When the COF μ is higher than 0.2, please select the model of which the weight is 10 to 20 times that of the workpiece for safety concern. • Considering the larger acceleration and impact force when transporting the workpiece, it is necessary to increase the SF.

Demonstration of Gripping Force

The figure below shows the gripping force is applied by the complete touch within the range designated in the figure below. by the two grippers, annex and workpiece, which is represented by F. Outer Diameter Grip

Working Position of Grip: L; please perform it

Inner Diameter Grip

Sequence of Model Selection

Seq 2 Confirm the moment of inertia of the gripping annex (gripper)

Please confirm whether the total moment of inertia of the gripper in z axis (pivot) is allowable. The calculation is based on the structure and formation of a gripper. As shown below, here is an example for the calculation by two parts divided, please refer to it.

Part B

1. Moment of Inertia (part A) in Z1 Axis (center of gravity A)

$|Z1 (kg \cdot m)^{2} = \frac{m1 (a1 + b1)^{2} \times 10^{-6}}{12}$

2. Moment of Inertia among Z2 Axis (center of gravity B)

m2: mass	of B (kg)
a2, b2 and c2: dimen	sion of part B (mm)

m1: mass of A (kg)

a1, b1 and c1: dimension of part A (mm)

m1 (kg) = a1 × b1 × c1 × specific weight × 10⁻⁶

m1 (kg) = a1 × b1 × c1 × specific weight × 10⁻⁶ IZ1 (kg·m)² = $\frac{m2 (a2^2+b2^2)\times 10^{-6}}{12}$

a

R2 R1

c1

71

3. Moment of Inertia (part B) among Z Axis (pivot)

R1: distance between the center of gravity A and the pivot of gripper opening (mm) R2: distance between the center of gravity B and the pivot of gripper opening (mm)

 $I (kg \cdot m)^{2} = (IZ1 + m1R1^{2} \times 10^{-6}) + (IZ2 + m2R2^{2} \times 10^{-6})$

Model	Allowable Moment of Inertia $(kg \cdot m)^2$	Mass (kg)
EDM 20	1.5×10 ⁻⁴	0.07
EDM 25	6.0×10 ⁻⁴	0.15
EDM 35	1.3×10 -3	0.25
EDM 42	3.0×10 -3	0.4

1. Allowable Load Torque

Please confirm whether the load torque applied on each gripper is allowable. The equation to calculate the load torque generated by the masses of gripper and workpiece is shown as below.

m1: Mass of Workpiece (kg)
R1: Distance between the Center of Gravity of Workpiece and
the Pivot of Gripper Opening (mm)
m2: Mass of Gripper (kg)
R2: Distance between the Center of Gravity of Workpiece and
the Pivot of Gripper Opening (mm)
g: Gravitational Acceleration (9.8m/s)

T = (W1 × R1 × 10⁻³)+(W2 × R2 × 10⁻³)+(other load torques) = (m1g × R1 × 10⁻³)+(m2g × R2 × 10⁻³)+(other load torques)

The centrifugal force generated when rotary gripper heads are clamping the workpiece and the inertia force generated due to
acceleration/deceleration of horizontal movement will both become the load torque applied on the grippers. Under the circumstance,
please confirm whether the total torque including the aforementioned torque is within the range of the MAX allowable load torque.

Model	MAX Allowable Load Torque T (N·mm)
EDM 20	0.05
EDM 25	0.35
EDM 35	0.70
EDM 42	1.50

2. Allowable Thrust Load

Please confirm whether the thrust load among the axis of the gripper opening is allowable.

F = W1 +	W2 +(other load torques)
= m1g	+ m2g	+(other load torques)

	inpper opening is allo	vvc
Model	Allowable Load of Thrust Force F (N)	
EDM 20	15	
EDM 25	20	
EDM 35	25	
EDM 42	30	

0 0 0

Part A

Warrant and Caution
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

CHELIC.

EDM series Angular Type Electric Gripper

Feature, Specification and Code of Order

- Feature:
 - Worm Gear Drive
 - Signal and Feedback
 - High Precision

The picture is for reference only. Please be subject to the specification table.

Specification

Use occasion	Model	Gripping force	Rotation angle (°)	Angular speed (°/s)	Actuation type	Ambient and fluid temperature (°C)	Operating humidity range (%)	Motor size	Position repeatability (°)	Finger backlash (one side) (°)	Idling stroke (one side) (°)	Weight (kg)					
General environment	EDM 20	6.4	180	600 H	600 Worm gear + Helical gear	rm ar 5 ~ 40 ical ar	25 95	20 口	+0.05	1	0.1	0.3					
	EDM 25	25						25 🗆				0.5					
	EDM 35	60	100							0 10	0 10	0 40	00 * 00	35 🗆	20100	2.5	0.3
	EDM 42	90						42 🛛				1.3					

Remark 1. Idling stroke: Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Warrant and Cautions

Product Index

EDG

EDF

EDM

FDP

EDQ

EDX EDK

EQX

ETB

Product Application

Examples

P-SERVO

Operation

Instructions

80

70 80

EDM series Angular Type Electric Gripper

Gripping force-current value graph, Side mounting, Bottom mounting

Side mounting

Bottom mounting

EDM series Angular Type Electric Gripper Internal structure, Components and Material list

EDM20

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	14	Dust cover	Aluminum alloy
02	Ball screw	Stainless	15	shell	Aluminum alloy
03	Screw washer	Stainless	16	Base	Aluminum alloy
04	Swivel Finger	Stainless	17	Swivel Finger Set Screw	Alloy steel
05	Swivel Finger Fixing Pin	Alloy steel	18	Motor Fixing Screw	Alloy steel
06	Shaft	Stainless	19	Motor Set Screw	Alloy steel
07	Shaft Spring Pin	Customized	20	Adapter Plate Fixing Screw	Alloy steel
08	Gear shaft	РОМ	21	Hood Fixing Screw	Alloy steel
09	Radial bearing	Bearing steel	22	Bottom Plate Fixing Screw	Alloy steel
10	Washer (small)	Aluminum alloy	23	Body Fixing Screw	Alloy steel
11	Washer (large)	Aluminum alloy	24	Wire Cover Plate	Stainless
12	Closed loop motor	Customized	25	Wire Cover Plate Fixing Screw	Alloy steel
13	Motor Adapter Plate	Aluminum alloy	26		

EDM series Angular Type Electric Gripper Internal structure, Components and Material list

EDM25, EDM35, EDM42

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	13	Motor Adapter Plate	Aluminum alloy
02	Ball screw	Stainless	14	Hood	Aluminum alloy
03	Screw washer	РОМ	15	shell	Aluminum alloy
04	Swivel Finger	Aluminum alloy	16	Base	Alloy steel
05	Swivel Finger Fixing Pin	Alloy steel	17	Swivel Finger Set Screw	Alloy steel
06	Shaft	Stainless	18	Motor Fixing Screw	Alloy steel
07	Shaft Spring Pin	Customized	19	Motor Set Screw	Alloy steel
08	Gear shaft	РОМ	20	Adapter Plate Fixing Screw	Alloy steel
09	Radial bearing	Bearing steel	21	Hood Fixing Screw	Alloy steel
10	Washer (small)	Aluminum alloy	22	Bottom Plate Fixing Screw	Alloy steel
11	Washer (large)	Aluminum alloy	23	Body Fixing Screw	Alloy steel
12	Close-loop Motor	Customized	24		

EDM series Angular Type Electric Gripper

External dimensions

EDM20

Unit:mm

Unit:mm

Warrant and Cautions

Product Index EDG

EDM series Angular Type Electric Gripper

External dimensions

EDM25

Depth6(Both sides)

EDM series Angular Type Electric Gripper

External dimensions

EDM35

Unit:mm

Unit:mm

Warrant and Cautions

Product Index EDG EDF

EDM series Angular Type Electric Gripper

External dimensions

EDM42

EDP12/EDP16

EDP12/EDP16

Small size EDP12

Small size

EDP16

	Warrant and Cautions
	Product Index
	EDG
	EDF
Stroke 4mm	EDM
Max. thrust 3N	EDP
Motor size 12 🗆	EDQ
	EDX
	EDK
	EQX
	ETB
	Product Application Examples
Stroke 4mm	P-SERVO
Max. thrust 6N	Operation Instructions

Motor size 16 🗆

Feature, Specification and Code of Order

- Feature:
 - Worm wheel and gear movement
 - Proximity sensor fixed point in place without back and forth correction
 - Used in light loading, stable stop when moving
 - Suitable for the place without air source, replace gripper.

The picture is for reference only. Please be subject to the specification table.

Specification

Use occasion	Model	Pushing force	Gripper stroke	Max. speed	Actuation type	Ambient and fluid temperature	Operating humidity range (%)	Motor size	Position repeatability	Weight (kg)
General	EDP 12	3	4	10	Worm screw	5 o 40	25 - 95	Ø12	0.05	0.15
environment	EDP 16	6	4	40	Belt drive	5 ~ 40	35 ~ 85	Ø16	0.05	0.18

Remark 1. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc. If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 2. If the load weight over the recommended value, the lifetime will shorter.

1

EDP series Electric Gripper/Open-loop Pushing force-Electric current limit, crew-hole mounting

Pushing force-Electric current limit

Warrant and Caution										
Product Index										
EDG										
EDF										
EDM										
EDP										
EDQ										
EDX										
EDK										
EQX										
ETB										
Product Application Examples										
P-SERVO										
Operation Instructions										

Screw-hole mounting

Internal structure, Components and Material list

EDP12, EDP16

Components and Material list

No.	Name	Material	No.	Name	Material
01	Holder	Aluminum alloy	15	Motor	Customized
02	Shell	Aluminum alloy	16	Proximity sensor	Customized
03	bottom cover	Aluminum alloy	17	Ball bearing	Bearing steel
04	Action lever(left)	Stainless	18	Pin	Bearing steel
05	Action lever(right)	Stainless	19	Motor Set Screw	Alloy steel
06	Ball screw	Stainless	20	Motor Fixing Screw	Alloy steel
07	Sensor switch holder	Aluminum alloy	21	Proximity sensor mount screws	Alloy steel
08	Inductive partition(open)	Steel	22	Bottom cover mount screws	Alloy steel
09	Inductive partition(close)	Steel	23	Finger set mount screws	Alloy steel
10	Shaft	Steel	24	Inductive partition(open) mount screws	Alloy steel
11	Motor Adapter Plate	Stainless	25	Inductive partition(close) mount screws	Alloy steel
12	Roller block	Stainless	26	Motor adapter board mount screws	Alloy steel
13	Finger	Stainless	27	Ball Stop Fixing Screw	Alloy steel
14	Finger base	Stainless	28		

6

External dimensions

EDP series - Angular Electric Gripper (Open-loop)

External dimensions

EDP16

Function Parameters

Operation Mode	8-48VDC Maximum Current 6A Variable Speed Control (without sensor) Open-loop control; Load protection function, stall protection CW/CCW control
Electronic Data	
1.DC Motor Maximum	300W
2.Operation Voltage (Vcc)	8-48 VDC
3.Max. Output Current	8A,<30S
4.Continuous output power	6A
5.Pulse Width Modulation Frequency	16KHz
6.Sampling frequency current control	16KHz
7.Max. Speed (1 complex pole)	50000rpm
8.Efficiency	95%
Input/ Output	
9.Digital Input/ Output	4
10.Set Value "SP"	Set value speed 0 +5V (1024steps)
11.Enable (EN)	Enable 0+5V
12.Direction "F/R"	Direction 0+5V
13.Brake (BK)	
14.Speed Feedback "PG"	OC output(30V/10mA max)
15.Status Indicator	Operation:LED light/Blink at 1 HZ ;Error:LED Blink at 20 Hz
Environment Status	
16.Working Temperature	-30+45°C
17.Storing Temperature	-40+85°C
Technical Data	
18.Weight	Approx. 90g
19.Dimensions (LxWxH)	55 x 86 x 21mm
20.Mounting hole diameter	for screws M3

55

EDP series - Angular Electric Gripper (Open-loop) OLC-3003S-00 Drive Instruction Manual

Pin 1	POWER +	Pin 6 GND	
Pin 2	POWER -	Pin 7 PG	
Pin 3	MA	Pin 8 SP	
Pin 4	MB	Pin 9 F/R	
Pin 5	MC	Pin 10 EN	
		Pin 11 +5V. Output	t

OLC-3003S-00 Drive Instruction Manual

Function Parameters

Operation Mode	8-48VDC Maximum Current 6A Variable Speed Control (without sensor) Open-loop control; Load protection function, stall protection CW/CCW control							
Electronic Data								
1.DC Motor Maximum	90W							
2.Operation Voltage (Vcc)	8-30 VDC							
3.Max. Output Current	5A , <60S							
4.Continuous output power	3A							
5.Pulse Width Modulation Frequency	20KHz							
6.Sampling frequency current control	20KHz							
7.Max. Speed (1 complex pole)	60000rpm							
8.Efficiency	92%							
Input/ Output								
9.Hall Sensor Signal	НА,НВ,НС							
10.Digital Input/ Output	5							
11.Set Value "SP"	Set value speed 0 +5V (1024steps)							
12.Enable (EN)	Enable 0+5V							
13.Direction "F/R"	Direction 0+5V							
14.Brake (BK)	Brake 0+5V							
15.Speed Feedback "PG"	TTL							
16. Status Indicator								
17.Hall Sensor Input Voltage	+5 VDC							
18.Hall and Ground Signal	GND							
Environment Status								
19.Working Temperature	-30+45°C							
20.Storing Temperature	-40+85°C							
Technical Data								
21.Weight	Approx. 20g							
22.Dimensions (LxWxH)	65 x 52 x 18mm							
23.Mounting hole diameter	for screws M3							

Warrant and Cautions											
Product Index											
EDG											
EDF											
EDM											
EDP											
EDQ											
EDX											
EDK											
EQX											
ETB											
Product Application Examples											
P-SERVO											
Operation Instructions											

EDP series - Angular Electric Gripper (Open-loop)

OLC-3003S-00 Drive Instruction Manual

Pin 1 +5V,Output
Pin 2 HA
Pin 3 HB
Pin 4 HC
Pin 5 GND
Pin 6 MA
Pin 7 MB
Pin 8 MC
Pin 9 POWER +
Pin 10 POWER -

Pin 11 PG Pin 12 SP Pin 13 GND Pin 14 GND Pin 15 +5V,Output Pin 16 EN Pin 17 F/R Pin 18 BK

Memo

		_	_	-		_	-	-	_		_	-	-	_	_	_			_	-	-	_				-	_	-	-	-	-	-	-
		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_
			_				_		_		_										_							_	_			_	_
-						-								_	_				_											-	-	-	-
		_	_	-	_	_	-	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	-	_	_	-	-	-	-	-	_
			_		_		_	_		_	_	_	_					_		_	_		_	_		_		_	_		_	_	_
															_																	-	
		_	-	-		_	-	-	_		-	-	-	-	_	_			_	-	-	_		-	-	-	_	-	-	\rightarrow	-	-	-
		_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
																																\neg	
				\rightarrow			-										-							\rightarrow	-			-	+	+	+	+	-
		_	_	\rightarrow	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	\rightarrow	+	\rightarrow	+	\neg
										_							_						_		_				\rightarrow	_		\rightarrow	
																													Т	T		T	
_						_								_	_				_													-	
		_	-	-		_	-	-	_		_	-	-	-	_	_		-	_	-	-	_		-		-	_	-	-	\rightarrow	-	-	-
		_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-						-									_				-											-	-	-	-
		_	_	-	_	_	-	_	_	_	_	_	_	_			-	_	_	_	_	_	_	-	-	_	_	-	-	\rightarrow	-	-	_
		_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
																																-	
-		_	_	-		_	-	-	_		_	-	-	_	_	_			_	-	-	_				-	_	-	-	-	-	-	-
		_	_	_	_	_	_	_	_	_	_	_	_	_			_	_		_	_	_	_	_	_	_	_	_	_	_	_	-	_
																													_			_	
				\neg													\neg							\neg	\neg				\rightarrow	\rightarrow	-	+	-
			_	\rightarrow			-	_		_	_		_				-	-		_	_	_	_	-	-	_		-	+	+	\rightarrow	+	-
				\rightarrow	_	_	_			_		_					\rightarrow	_	_	_			_		\rightarrow	_		_	\rightarrow	\rightarrow	_	\rightarrow	
																																\neg	
				\rightarrow											_														+	+	-	+	-
		_	_	\rightarrow	-	_	\rightarrow	_	_	-	_	_	_	_			\rightarrow	-	_	_	_	_	\rightarrow	\rightarrow	\rightarrow	_	_	\rightarrow	\rightarrow	+	\rightarrow	+	\neg
						_		_		_		_					_		_	_			_		_	_			\rightarrow	\rightarrow		\rightarrow	
				T																									T	T	T	T	
				\neg																									\neg	\neg		\neg	
			_	\rightarrow			-	_		_	_		_				-	-			_	_		-	-	_		-	+	+	\rightarrow	+	-
				\rightarrow	_	_	_	_	_	_		_	_	_			_	_	_	_	_		_	_	_	_	_	_	\rightarrow	\rightarrow	_	\rightarrow	_
																	[
				\rightarrow			-								_									-				-	+	+	\rightarrow	+	-
							- I																					- 1					1

EDQ series 3-Finger Round Body Electric Gripper EDQ25/EDQ42

Aluminum shell Large heat dissipation

Close-loop motor Feedback signal

WormSelf-lock mechanismWorm gearForce endurance during start and stop

High precision roller slide Repeating accuracy ± 0.02 mm

Warrant and Cautions
Product Index
EDG

EDF EDM

EDP

EDQ

EDX EDK EQX ETB

Product Application Examples P-SERVO

Operation

Instructions

EDQ series 3-Finger Round Body Electric Gripper

EDQ25/EDQ42

Small size EDQ 25

Large size EDQ 42

Max. stroke 10mm Max.Gripping force 22N Motor size 25 ロ

Max. stroke 14mm Max.Gripping force 102N Motor size 42 □

Gripper Specifications

Gripping Point Distance and change of Gripping Force

Gripping Force (%)

Spec	Allowable Vertical	Allowable Load Torque (N-m)							
opee	Load F (N)	Ма	Mb	Mc					
EDQ 25	169	3.8	3.8	3.0					
EDQ 42	253	6.3	6.3	5.7					

Warrant and Cautions
Product Index

EDG

EDF

Gripper Specifications

Order Verify Gripping Force

Verify Conditions → Calculate required Gripping Force → Select Model Number from Gripping Force Chart → Select Gripping Speed

Indication of Gripping Force

The following figure shows the Gripping Force when 3 fingers and accessories are in full contact with workpiece; Gripping Force is expressed as F.

Gripping Speed (mm/sec)

Gripping Force F(N)

EDQ series 3-Finger Round Body Electric Gripper

Feature, Specification and Code of Order

Feature:

- Worm wheel and gear movement
- Feedback signal
- High precision

The picture is for reference only. Please be subject to the specification table.

Specification

Use occasion	Model	Gripping force	Switch Stroke	Angular speed	Actuation type	Ambient and fluid temperature	Operating humidity range	Motor size	Repeatability	Finger backlash (one side)	Idling stroke (one side)	Weight
Gen enviro	EDQ 25	22	10	40	Worm screw + Worm wheel + Belt drive $5 \sim 40$	5 40	35~85	25 口	0.02	0.3	0.15	0.5
eral Iment	EDQ 42	102	14	50		5~40		42 口		0.4		1.0

Remarks 1. Idling stroke: Reference value when correcting the error caused by reciprocating motion.

Remark 2: The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Remark 4. The speed must be set at 5mm/s during clamping.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

EDQ series 3-Finger Round Body Electric Gripper

Allowable inertia graph, Side mounting, Plate mounting, Bottom mounting

Allowable inertia graph

Side mounting

Plate mounting

Bottom mounting

Warrant and Cautions

Product Index EDG EDF EDM

> EDP EDQ

> EDX

EDK

EQX

ETB

Product Application Examples

P-SERVO

Operation Instructions

EDQ series 3-Finger Round Body Electric Gripper

Internal structure, Components and Material list

EDQ25, EDQ42

Compon	ents and	Material	list
compon	chits and	matchat	1130

No.	Name	Material	No.	Name	Material	
01	Body	Aluminum alloy	15	Motor	Customized	
02	Side Rail Holder	Aluminum alloy	16	Bottom Plate Fixing Screw	Alloy steel	
03	Side Rail	Stainless	17	Body Fixing Screw	Alloy steel	
04	Finger Plate	Stainless	18	Adapter Plate Fixing Screw	Alloy steel	
05	Gear	Stainless	19	Motor Fixing Screw	Alloy steel	
06	Screw	Customized	20	Motor Set Screw	Alloy steel	
07	Housing	Aluminum alloy	21	Screw Set Screw	Alloy steel	
08	Bottom Plate	Aluminum alloy	22	Radial Bearing	Bearing steel	
09	Motor Adapter	Aluminum alloy	23	Ball Stop Fixing Screw	Alloy steel	
10	Shaft	Stainless	24	Ball Stop	Stainless	
11	Finger Plate-2	Stainless	25	Side Rail Holder Fixing Screw	Alloy steel	
12	Finger Plate Fixing Pin	Alloy steel	26	Side Rail Fixing Screw	Alloy steel	
13	Finger Plate Roller	Bearing steel	27	Bearing Holder	Aluminum alloy	
14	Side Rail Set Screw	Alloy steel				

EDQ series 3-Finger Round Body Electric Gripper

External dimensions

Unit:mm

EDQ series 3-Finger Round Body Electric Gripper

External dimensions

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

EDX series Electric Slide Table

Stainless circulation type Circuit roller slider

Load – Speed curve

EDX series Electric Slide Table

Small size EDX 16

Max. stroke 100mm Max. thrust 466N/233N Motor size 25 □

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO

Confirm the actuation time Seq 2

Seq 1 Confirm the mass transported and velocity

Based on the (velocity-mass transported curve chart) to select the target model by the mass of workpiece and speed.

※EDX16-50 is temporarily selected according to the conditions listed on the right side.

Seq 2 Confirm the actuation time

After learning the overall actuation time from Method 1, we can further obtain the details from Method 2, which is described below.

Method 1: confirm by the curve chart (actuation time)

Method 2: confirm by the formula (curve chart of velocity-movable mass) The actuation time can be thereby calculated by the method as follows.

Actuation Time: to obtain T from the equation as below

T=T1+T2+T3+T4(s)

•T1: time of acceleration, and T3: the time of acceleration can be acquired from the equation below.

T1=V/a1(s) T3=V/a2(s)

•T2: the time of constant velocity can be acquired from the equation below.

$$T2 = \frac{L - 0.5 \cdot V \cdot (11 + 13)}{V}$$

•T4: time of stability varies due to different motor models, and different positioning widths of step position, where selection should be made referring to conditions as shown as follows as well as the positioning widths of step position. T4=0.15(s)

Example) Provided the values from T1 to T4 are as follows.

T1=V/a1=100/5000=0.02(s) T3=V/a2=100/5000=0.02(s)

$$T2=\frac{L-0.5\cdot V\cdot (T1+T3)}{V}$$

50-0.5.100.(0.02+0.02) 100

=0.48(s)T4=0.15(s)

Hence, work time: T is T=T1+T2+T3+T4 =0.02+0.48+0.02+0.15 =0.67(s)

Seq 3 Confirm the allowable torque

Conditions of Use Mass of Workpiece: 0.5 (kg)

- Velocity: 100 (mm/s)
- Installation Method: Vertical
- Stroke: 50 (mm)
- Acceleration/Deceleration: 5,000 (mm/s²)

Velocity-Mass Transported Curve Chart

EDX 16/Axial Bending

3

Seg 2 Confirm the actuation time

After learning the overall actuation time from Method 1, we can further obtain the details from Method 2, which is described below.

Seg 3 Confirm the allowable (allowable static torque) torque

(allowable static torque)

Please confirm whether the dynamic torque and static torque applied on operating units are allowable.

According to the outcomes shown as above, EDX16-50 is selected.

CHELIC

Model Selection Sequence-1

Velocity - Mass Transported Curve Chart

Step Motor (with a DC24V encoder)

%The table below shows when the positioning thrust force is at 100%

Velocity - Movability Curve Chart

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Operating Conditions

Acceleration/Deceleration: 3000mm/s² Positioning Width: 0.5mm

Allowable Static Torque

Mo	del	EDX16
Axial Bending	(N·m)	4.8
Biased	(N·m)	4.8
Reverse	(N·m)	1.8

Allowable Torque

Allowable Dynamic Torque

Calculation of Load Factor of Lead

1. Determine the conditions of use Model: EDX Size: 16 Dimension of Installation: Horizontal/Top/ Horizontal Walls/Vertical

Acceleration (mm/s²): a Mass Transported (kg): m Center of Gravity of Mass Transported (mm): Xc/Yc/Zc

- 2. Select the corresponding graphs based on model, size and installation method
- 3. According to the acceleration and mass transported, we can learn the outward extension (mm) from the graphs: Lx/Ly/Lz.
- 4. Solve the load factor of each direction.
- ax=Xc/Lx ay=Yc/Ly az=Zc/Lz 5. Confirm the sum of αx , αy and αz is less than or equal to 1. αx+αy+αz≦1

If the value exceeds 1, please take the countermeasures such as reducing the acceleration, lowering the mass transported, changing the center of gravity or changing the series.

Example

1. Conditions of Use Model: EDX Spec: 16 Installation Method: Horizontal

Acceleration (mm/s): 5000

Mass Transported (kg): 0.6

Center of Gravity of Mass Transported (mm): Xc=50, Yc=30, Zc=60

2. Lx=220mm, Ly=135mm, Lz=250mm

ax=50/220=0.23

αy=30/135=0.22

αz=60/250=0.24

Ξ

3. The load factors in each direction are shown as follows.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDX EDK
EDX EDK EQX
EDX EDK EQX ETB
EDX EDK EQX ETB Product Application Examples
EDX EDK EQX ETB Product Application Examples P-SERVO

Installation Method

For the selection method of allowable torque, it is as the same Thrust Force Setup (%)

as the selection of positioning control.

EDX series Electric Slide Table

Feature, Specification and Code of Order

- Feature:
 - Belt with Screw Transmission
 - Closed-Loop Step Motor
 - High Precision

The picture is for reference only. Please be subject to the specification table.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDX EDK
EDX EDK EQX
EDX EDK EQX ETB
EDX EDK EQX ETB Product Application Examples
EDX EDK EQX ETB Product Application Examples P-SERVO

Specification

Use occasion	Model	Gripper stroke	Lead	Max. thrust	Work (K	load ^{g)}	Speed	Actuation type	Ambient and fluid temperature	Operating humidity range	Motor size	Position repeatability	Idling stroke	Weight
		(mm)	(mm)	(N)	horizontal	vertical	(mm/s)		(°C)	(%)		(mm)	(mm)	(kg)
Gene	EDX 16	30, 50,	1	466	6	2	0 ~ 50	50 Ball screw	5 ~ 40	35~85	25 🗖	10.02	0.3	30mm : 1 50mm : 1.1
eral Iment		75, 100	2	233	6	1	0 ~ 100	+ belt			20 Ц	10.02	or less	75mm : 1.2 100mm : 1.3

Remark 1. Idling stroke: Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Code of Order

EDX - 16 - 30 - 03 - 1 - P

/lark	Cable Length] ④	Mark	Lead]
01	1 m		1	1	
03	3 m		2	2	
05	5 m	_			
10	10 m	5	Mark	Actuator	
Standard	d:3m]	Р	P-Servo	
			X Standar	d component Refer to p	age 83

EDX series Electric Slide Table

Load-Speed graph, Table deflection (Reference)

Horizontal Use 8 Lead 2 6 Lead 1 load (kg) 4 2 0 200 250 50 150 0 100 Speed (mm/sec)

Load-Speed graph

Slide Table Deflection (Reference Value)

Table Deflection by horizontal load

Table Deflection at arrow mark caused by weight of load when Slide Table extends out.

Table Deflection by lateral load

Table Deflection at arrow mark caused by weight of load when Slide Table extends out.

Table Deflection by offset load

Deflection at arrow mark caused by resulting torque at center of offset load cylinder.

CHELIC,

Warrant and Cautions

EDX series Electric Slide Table

Internal structure, Components and Material list

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	14	Screw nuts	Alloy steel
02	Front plate	Aluminum alloy	15	Slider wirh slide base	Stainless
03	Rear cover	Aluminum alloy	16	Front rail fixing screw	Alloy steel
04	Bearing mount ring	Aluminum alloy	17	Rear cover mount screws	Alloy steel
05	Motor fixing plate	Stainless	18	Motor fixing plate fixing screw	Alloy steel
06	Front block	Stainless	19	Motor Fixing Screw	Alloy steel
07	Main shaft	Carbon steel	20	Front slider fixing screw	Alloy steel
08	Motor drive wheel	Aluminum alloy	21	Braces fixing screws	Alloy steel
09	Screw synchronization wheel	Aluminum alloy	22	Screw	РОМ
10	Bush	Carbon steel	23	Packing	Rubber
11	Closed loop motor	Customized	24	Ball screw	Customized
12	Motor drive wheel set screw	Alloy steel	25	Bearing	Bearing steel
13	Screw synchronization wheel set screw	Alloy steel	26	Timing belt	Customized

EDX series Electric Slide Table

External dimensions

EDX16

Unit:mm

size(mm)	L	С	D	E	F	G	н	J	К
EDX 16-30	108	4	38	85	76	2	40	40	40
EDX 16-50	132	6	34	112	100	2	39	78	78
EDX 16-75	162	8	36	156	130	4	36	72	36
EDX 16-100	182	10	36	181	150	4	36	108	36

Memo

																												\neg		
								_																				-	-	
																												-	-	-
	_								-	_	_				_	_			-		_	-	_				-	-	-	-
	_	 _	-		_		_	_	_	_			_	_	_	_	-	-	_	-	_	_	_	_			-	-	-	-
	 _	 _					_	_	_	_	_			_	_	_	-	_	_	-	_	-	_	_	-	-	-	+	-	-
 	 _	 	_		_		_	_	_	_			_	_	_		_	_	_	_	_	_	_	_	-	-	-	+	\rightarrow	—
	 _	 			_		_	_	_	_				_	_		_	_	_	_	_	_	_	_	_	-	-	-	-	_
	 _	 					_	_	_	_							_	_	_	_	_	_		_	_	_	_	-	-	_
	 	 					_										_	_	_	_	_	_		_	_	_	_	_	_	_
	_						_	_	_								_	_	_	_	_	_		_	_	_	_	_	_	_
																	_	_		_		_			_	_	_	_	_	_
																	_	_		_		_			_		_	_	_	_
																		_									_		_	
																													_	_
																												-	-	
								_																				-	-	
																												-	-	
											_	_				_												-	-	-
	_	 _	_					_	_	_					_	_			_		_	_	_	_				-	-	-
	-	 -			-	_	_	-	-	-	_				-	_		-	-	-	_	-	-	-		-	-	-	-	-
	 _	 _	_		_		_	_	_	_			_	_	_		-	-	_	-	_	_	_	_	-	-	-	+	-	-
 	-	 	-	_	-	_	_	-	-	-				_	_		-	-	-	-	_	-	_	-	-	-	-	-	-	-
 	 _	 					_	_	_	_				_	_		_	_	_	_	_	_	_	_	_	_	-	+	-	-
	 _	 _	_		_		_	_	_	_			_	_	_		_	_	_	_	_	_	_	_	_	-	-	-	-	_
	 _	 					_	_	_	_					_		_	_	_	_	_	_	_	_	_	_	_	\rightarrow	-	_
 	 _	 					_	_	_	_					_		_	_	_	_	_	_	_	_	_	_	_	-	-	_
								_									_			_					_		_	\rightarrow	\downarrow	\neg
								_									_	_		_					_		_	_	\rightarrow	_
																									_			\rightarrow	\downarrow	_
								_									_			_								\rightarrow	\downarrow	
																									_				\downarrow	
																													$ \downarrow$	
																												\neg	T	
																												\neg	T	
																												\neg	1	
																												\neg	+	
																												\neg	\uparrow	

Aluminum shell Large heat dissipation Close-loop motor Feedback signal

Proximity sensor

fixed point in place without back and forth correction

Pushing force - Speed graph

Warrant and Cautions

EDK series Electric Slide Table/Open-loop

EDK25/EDK36

			Product Index
			EDG
Small size			EDF
		Strokes25, 50, 75, 100mm	EDM
EDKZO		Max thrust 20N	EDP
		Motor size 25 (PM)	EDQ
			EDX
			EDK
			EQX
			ETB
Large size			Product Application Examples
		Strokes25, 50, 75, 100mm	P-SERVO
LDI	· · · · · ·	Max. thrust 60N	Operation Instructions
		Motor size 36 (PM)	

Feature, Specification and Code of Order

Feature:

- Proximity sensor fixed point in place without back and forth correction.
- Used in light loading, stable stop when moving.

The picture is for reference only. Please be subject to the specification table.

Specification

Use occasion	Model	Gripping force	Gripper stroke	Max. speed	Actuation type	Ambient and fluid temperature	Operating humidity range	Motor size	Repeatability	Weight
General	EDK 25	20	25, 50,	100	Ball	5 40	25 05	25	0.05	25mm:0.4 50mm:0.55 75mm:0.65 100mm:0.8
environment	EDK 36	60	75, 100	100	screw	5~40	35 ~ 85	36	0.05	25mm:0.9 50mm:1.1 75mm:1.3 100mm:1.5

Remark 1. Idling stroke: Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Code of Order

Pushing force - Speed graph

Pushing force - Speed graph

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Screw-hole mounting

Internal structure, Components and Material list

EDK25

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	13	Rear Baffle Fixing Screw	Alloy steel
02	Slide base	Aluminum alloy	14	Rear Baffle Fixing Screw	Alloy steel
03	Adapter Shaft	Aluminum alloy	15	Motor Fixing Screw	Alloy steel
04	Front plate	Aluminum alloy	16	Motor Cover Fixing Screw	Alloy steel
05	T-Slide	Carbon steel	17	T-Slide Fixing Screw	Alloy steel
06	Rear cover	Aluminum alloy	18	Front Slide Fixing Screw	Alloy steel
07	Motor Cover Plate	Stainless	19	Adapter Shaft Fixing Screw	Alloy steel
08	Rear Baffle	Stainless	20	Motor/Adapter Shaft Fixing Screw	Alloy steel
09	Sensing chip	Stainless	21	Sensing Chip Fixing Screw	Alloy steel
10	Grummet	Rubber	22	Adapter Shaft Set Screw	Alloy steel
11	Motor	Customized	23	Body Countersunk Head Screw	Alloy steel
12	Sensor	Customized			

CHELIC

Warrant and Cautions
Product Index

EDG EDF EDM

EDK series Electric Slide Table/Open-loop

Internal structure, Components and Material list

EDK36

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	14	Sensor	Customized
02	Slide base	Aluminum alloy	15	Rear Baffle Fixing Screw	Alloy steel
03	Adapter Shaft	Aluminum alloy	16	Rear Baffle Fixing Screw	Alloy steel
04	Adapter Cover	Aluminum alloy	17	Adapter Cover Fixing Screw	Alloy steel
05	Front plate	Aluminum alloy	18	Motor Fixing Screw	Alloy steel
06	T-Slide	Carbon steel	19	Motor Cover Fixing Screw	Alloy steel
07	Rear cover	Aluminum alloy	20	T-Slide Fixing Screw	Alloy steel
08	Motor Cover Plate	Stainless	21	Front Slide Fixing Screw	Alloy steel
09	Front Baffle	Stainless	22	Sensing Chip Fixing Screw	Alloy steel
10	Rear Baffle	Stainless	23	Adapter Shaft Fixing Screw	Alloy steel
11	Sensing chip	Stainless	24	Front Baffle Fixing Screw	Alloy steel
12	Grummet	Rubber	25	Adapter Cover, Shaft Fixing Screw	Alloy steel
13	Motor	Customized			

External dimensions

EDK25

Size(mm)	А	В	С
EDK 25-25	17.5	90.5	17.5
EDK 25-50	30	115.5	30
EDK 25-75	42.5	140.5	42.5
EDK 25-100	55	165.5	55

Unit:mm

Unit:mm

EDK series Electric Slide Table/Open-loop

EDK36

	Warrant and Cautions
	Product Index
	EDG
	EDF
	EDM
	EDP
	EDQ
	EDX
	EDK
	EQX
	ETB
ĺ	Product Application Examples
	P-SERVO
	Operation

 \oplus

 $5^{^{+0.03}}$

С

 \oplus

1

10

12.5

2

С

OLC-001 Drive Instruction

Technical Parameters

- Power Input: DC20V-30V
- 8-level Current selectable
- PPMW constant current bipolar subdivision Drive
- 16-level subdivision selection
- Single-/Double-Pulse Selection

- Optically Isolated Input: 5-24VDC compatible
- Motor Short-circuit Protection
- Self-diagnosis
- Compact design, low noise, low vibration
- Off-line capability provided

Technical Parameters

Drive Model		OCL-001		
Applicable Motor		2-phase mixed step motor; maximum 3.2A (peak) applicable for OCL-001		
Power Supply		20 - 30V DC		
Output Current		OCL-001: 0.4A-3.2A /phase (peak)		
Drive Method		Full-bridge bipolar PWM Drive		
	Pulse signal	Photocoupler input voltage H=3.5-26V. L= 0-0.8V		
Input Signal	Off signal	Trigger Current 6-15mA		
Direction Signal		5V and 24V signals compatible		
Dimensions		94(L)x27(W)x60(D), without plug-in program		
Weight		Approx. 180g		
	location	Avoid dust, oil mist and corrosive gas		
Uso Environment	Humidity	<85% RH, no condensation		
Use Environment	Temperature °C	0~40		
	Heat Dissipation	Installed in ventilated environment		

Illustration and Interface Definition

- 1. Signal input (as shown in the figure, from the left to the right) Pin1 – Pulse STEP+, Pin2 – Pulse STEP-; Pin3 –Dir+; Pin4 - Dir+ Pin5 – Off-line FREE+; Pin6 - Off-line FREE-; Pin7 – OUT+; Pin8- OUT-
- 2. Motor Connection and Power Input (as shown in the figure, from the left to the right) Pin1 – V+; Pin2 –V-; Pin3 - A+; Pin4 – A-; Pin5 – B+; Pin6 – B-

OLC-001 Drive Instruction

Set Switch

SV	V1	SW2	SW3	SV	V4	SI	N5	SI	N6	SW7	SI	N8	
	Sub	divisior	Device		Sing	le/D	ual	Puls	se	Currer	nt Se	ttin	g

3.Subdivision Device

	DIP S	witch		Pulse number
SW1	SW2	SW3	SW4	revolution
ON	ON	ON	ON	400
ON	ON	ON	OFF	800
ON	ON	OFF	ON	1600
ON	ON	OFF	OFF	3200
ON	OFF	ON	ON	6400
ON	OFF	ON	OFF	12800
ON	OFF	OFF	ON	25600
ON	OFF	OFF	OFF	102400
OFF	ON	ON	ON	1000
OFF	ON	ON	OFF	2000
OFF	ON	OFF	ON	4000
OFF	ON	OFF	OFF	5000
OFF	OFF	ON	ON	8000
OFF	OFF	ON	OFF	10000
OFF	OFF	OFF	ON	40000
OFF	OFF	OFF	OFF	100000

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation

4. Current Setting

[DIP Switcl	h	OLC-001
SW6	SW7	SW8	Phase Current
ON	ON	ON	0.4A
ON	ON	OFF	0.8A
ON	OFF	ON	1.2A
ON	OFF	OFF	1.6A
OFF	ON	ON	2.0A
OFF	ON	OFF	2.4A
OFF	OFF	ON	2.8A
OFF	OFF	OFF	3.2A

5. Operation Mode

SW5	Running Direction	Remark
ON	Dual Pulse	
OFF	Pulse + Direction	

OLC-001 Drive Instruction

Pulse + Direction Mode: Apply pulse at pulse input end; Motor rotates in one direction when Photocoupler at Direction input is OFF; Motor rotates in the other direction when Photocoupler at Direction input is ON.

Dual Pulse Mode: Motor rotates in one direction when pulses are applied at Pulse input; Motor rotates in the other direction when pulses are applied at Direction input.

Note: Switch Multiple Use (Test Run Function) is used for testing drive function. Toggle SW5 to ON when power is turned off; then switch the Power on. Toggling SW5 from ON position to OFF and toggling it back after 1 second, this will activate the try-run function; (with the applicable phase current, Motor will rotate 1 revolution respectively in CW and CCW direction at speed of 1 turn/s).

6.Phase lock current

When there is no pulse input for 500ms, the current will be automatically lowered to 50% of the setting value (default setting) to reduce heat generation; the current resumes to setting value when pulse is input. Consultation with our company is recommended if the customer demands that the phase current to be maintained at 10%-90% when there is no pulse input, for ensuring phase-locked torque (motor will dissipate more heat).

7. Functions of Indicators

The product has 2 LED indicators, 1 red and 1 green, for status indication:

Function	Indicator Status	Description
Motor Stop	Green LED blinks	No impulse input or Drive off-line
Motor Run	Red LED on constantly	Impulse inputting, motor running
Motor Overcurrent	1 Green + 1 Red	Excessive phase current in Motor or Drive failure
Motor not connected	1 Green + 2 Red	Motor not connected
Overvoltage	1 Green + 3 Red	Input Voltage > 50V
No voltage	1 Green + 4 Red	Input Voltage < 18V
Other Fault	1 Green + 5 Red	

Power Supply:

Voltage

Cut-off Wave Drive constantly alters magnitude and direction of voltage across motor windings, and takes current measurements to ensure precise phase current. For ensuring to maintain high efficiency and low noise at the same time, voltage supplied to the Drive must be at least 5 times the Rated Phase Voltage of the Motor (and Motor Rated Phase Current x Phase Resistance). If you want better high-speed performance of the motor, you need to increase the supply voltage to the Drive. If voltage-regulated power supply is used, its voltage shall not exceed 30V. Since rated current of non-voltage-regulated power supply is the full load current; when the load is light, such as the motor is not running, the actual voltage is almost 1.4 times of the rated voltage. To ensure smooth and quiet motor operation, a lower voltage shall be used.

Current

Maximum supply current shall be the sum of 2 phase currents; in general conditions, the current you need is dependent on the model, voltage, rpm and load conditions of the motor. The actual current value is significantly lower than the maximum current value. Since the Drive uses switching mode amplifier, the applied high-voltage low-current supply is converted into low-voltage and high-current, the more the supplied voltage exceeds the motor rating, the lesser supply current will be needed.

Recycled Power Discharge

When the motor decelerates, it will convert dynamic energy into electricity like a power generator. Some energy will be consumed by the Drive and motor. If your application has large load in high-speed operation, substantial dynamic energy will be converted into electricity; which tends to activate a Drive alarm (overvoltage), or even to damage the Drive. Since this Drive is provided with polarity protection that prevents reversed connection of power source, thereby damage of the Drive; the shortcoming of this function is that the current can only flow in from the power supply but no flow-out of the Drive, therefore the external absorption resistance or capacitor is of no use.

If your application has large load in high-speed operation, please consult with our company in advance, for shielding the polarity protection function and for connecting external absorption resistance and capacitor. When there is no polarity protection in place, attention must be paid not to connect the positive and negative poles reversely; damage cause by reversed connection is not covered by the warrant.

OLC-001 Drive Instruction

Motor Connecti

Warning: When connecting a motor to the Drive, make sure the power to the motor is turned off. Make sure that unused motor leads are not short-circuiting with other objects. Never cut off the motor when the Drive is energized. Never connect motor leads to the Ground or to Power Supply.

1.A 4-wire motor can only be connected by one method.

- 2.A 6-wire motor can be connected in 2 ways: Full winding or half winding. In full winding mode, the motor gives higher torque at low rpm, but is unable to runs as fast as in the half winding connection. When running the motor with full winding, make sure the current is lower than 30% of that for the full winding connection, otherwise motor may overheat.
 3.An 8-wire motor can be connected in 2 ways: Series or Parallel. Series connection gives higher torque at low speed but less torque
- 3.An 8-wire motor can be connected in 2 ways: Series or Parallel. Series connection gives higher torque at low speed but less torque at high speed. When running in series connection, provide 50% current as for the series connection to prevent from overheating.

Caution:

- 1.Different motors have different corresponding (wire) colors; refer to motor data sheet for guidance. For example, model 28 and model 42 motors have different wire colors.
- 2.Phases are relative, though windings of different phases shall not be connected to terminals of a same phase of the Drive (A+ and A- belong to one phase; B+ and B- belong to another). Should the motor rotates in an unexpected direction, just change positions of A+ and A-.
- 3. This Drive can only drive 2 phase mixed type step motors; it cannot drive a 3-phase or 5-phase step motor.
- 4. How to verify the correct connection of step motor in series or parallel mode: Turn the motor shaft when the motor is not connected to the Drive; if the shaft is turned easily, the connection is correct; if it is sluggish or accompanied with certain noise, the connection must be wrong.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Small size EQX 10

Max. stroke 100mm Position repeatability \pm 0.02 Motor size 25 \Box

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB

Product Application Examples

> P-SERVO Operation Instructions

Positioning Control, Sequence Selection

Seq 1 Confirm the mass transported and velocity \implies Seq 2 Confirm the actuation time (vertical move)

0

õ

Example

Seq 1

Conditions of Use

- Mass of Workpiece: 0.25 (kg)
- Velocity: 100 (mm/s)
- Acceleration/Deceleration: 3,000(mm/s)
- Stroke: 50 (mm)
- Installation Condition: Horizontal Move

movable mass graphs

0

Refer to the velocity - vertical move mass graph, where the target model is to be selected by mass and speed of workpiece.

15

Example

From the right graph, EQX 10 is temporarily selected.

Seq 2 Confirm the actuation time

From the calculations shown as below, we can obtain the actuation time. Actuation Time:

T can be solved through the equation below

T=T1+T2+T3+T4(s)

• T1: Acceleration Time, and T3: Deceleration Time

From the equation below we can learn:

• T2: time of constant velocity can be obtained through the equation below.

(s)

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

• T4: time of stability, which might vary due to different motor models, loads and positioning widths of step position; the values shown as follows should be included considering the selection.

T4=0.15(s) Example

The values from T1 to T4 are shown as follows. T1=V/a1=100/3000=0.033(s)

$$T2 = \frac{L-0.5 \cdot V \cdot (T1+T3)}{V} = \frac{50-0.5 \cdot 100 \cdot (0.033+0.033)}{100}$$

T3=V/a2=200/3000=0.033(s)
T4=0.15(s)
As a result, the actuation time: T is
T=T1+T2+T3=0.033+0.467+0.033+0.15=0.683(s)
From the outcomes shown as above, EQX 10 is selected

Velocity - Movable Mass Graph Criterion, Thrust Force Setup - Thrust Force Graph

Velocity – Movable Mass Graph Criterion EQX 10 Movable Mass – Velocity Curve Graph

Thrust Force Setup – Thrust Force Graph

Thrust Force Setup (%)	Duty Cycle (%)	Continuous Thrust Time (min)
60 below	100	_
70	30	3
100	15	1

Allowable Torque

Allowable Dynamic Torque, Offset of Slider

Allowable Dynamic Torque

Offset of Slider (reference) Table Deflection (reference)

The table deflection of horizontal load

The deflection is incurred by the load on the table when the table is completely extended. (outermost)

The table deflection of lateral load

The deflection is incurred by the load on the table when the table is completely extended. (outermost)

The table deflection of lateral load

When the table is completely extended, the deflection is incurred when the load on the table is generated when the load is shifted outside the table. (outermost)

Feature, Specification and Code of Order

- Feature:
 - Ball Screw Transmission
 - Closed-Loop Step Motor
 - High Precision

The picture is for reference only. Please be subject to the specification table.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Specification

Use occasion	Model	Lead	Pushing force	Work load (Kg)		Stroke Speed		Actuation type	Ambient and fluid temperature	Operating humidity range	Motor	Position repeatability	Idling stroke	Clearance	Weight
			(N)	horizontal	vertical	(mm)	(mm/s)		(°c)	(%)	0.20	(mm)	(mm)	(mm)	(kg)
General environment	FOX 10	1	466	6	2	25, 50.	50	Ball	5~40	35~85	25 🗆	+0.02	0.2	0.2	25mm: 0.64 50mm: 0.74
		2	230	5.2	1.7	75, 100	100	screw	5 10	55 65	25 1	_0.02	orless	orless	75mm: 0.84 100mm: 0.94

Remark 1. Idling stroke: Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Code of Order EQX - 10 - 50 - 03 - 1 - P 1 Mark 3 Mark 4 Mark Wire length Туре Lead 10 10 01 1 m 1 1 03 3 m 2 2 (2) Mark Stroke 05 5 m (5) Mark Actuator 25 25 mm 10 10 m Р P-Servo 50 50 mm * Standard: 3M X Standard component Refer to page 83 75 75 mm 100 100 mm

Pushing force-Current value, Load-Speed graph

Pushing force-Current graph

Load-Speed graph

Body mounting

Mounting direction

Side mounting

Internal structure, Components and Material list

EQX10

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Components and Material list

No.	Name	Material	No.	Name	Material
01	Body	Aluminum alloy	17	Shaft screw	Alloy steel
02	Slider-1	Aluminum alloy	18	Closed loop motor 25	Customized
03	Main shaft	Carbon steel	19	Motor mount screw	Alloy steel
04	Ball screw(Ball screw)	Customized	20	Rear cover mount screws	Alloy steel
05	Ball screw(Nut)	Customized	21	Shell mount screws	Alloy steel
06	Linear slide (Rail)	Stainless	22	Slider mount screw	Alloy steel
07	Linear slide(Slider)	Stainless	23	Postioned pin	Bearing steel
08	Slider-2	Aluminum alloy	24	Positioning block mount screw	Alloy steel
09	Packing mount ring	Customized	25	Slide rail mount screws	Alloy steel
10	Packing mount ring	Aluminum alloy	26	Slider mount screw	Alloy steel
11	Bearing mount ring	Aluminum alloy	27	Radial bearing	Bearing steel
12	Motor mount	Aluminum alloy	28	Packing block buckle	Alloy steel
13	Spacer block	Aluminum alloy	29	Shaft packing	NBR
14	Shell	Aluminum alloy	30	Screw washer mount screw	Alloy steel
15	Rear cover	Stainless	31	Screw mount screw	Alloy steel
16	Ball screw gasket	Nylon	32	Motor mount fixing screw	Alloy steel

External dimensions

EQX10

Unit:mm

size(mm)	А	В	С	D	E	F	G	Н	Ι
EQX 10-25	20	30	22	29	14	91	164	29	39
EQX 10-50	24	34	43	50	14	116	189	50	60
EQX 10-75	28	38	64	71	39	141	214	71	81
EQX 10-100	32	42	85	92	39	166	239	92	102

Memo

								_											_											
					_	_					_																	-		-
			 -		_	_		_	_	_	_					_	_	_	_			_	_	_				-	-	-
	 _	_	 _			_	 _	_	_	_			_	-	-	_	_	_	_	_	_	_	_	_	_	_		-	-	-
	 _	_	 				 _	_	_	_			_	_	_	_	_		_	_	_	_	_	_	_	_	-	-	-	_
	 		 				 	_		_			_	_	_	_	_		_		_	_	_	_	_	_	_	_	-	_
	 						 	_		_				_	_				_		_		_			_	_	_	_	_
	 						 							_	_												_	_	_	_
														_	_													_	_	_
																_					_			_						_
																			_											
											_								_											
								-			_								-								\neg	\neg	+	\neg
								_		_									_				_				\neg	+	+	\neg
	 _		 				 _	-	_	_	_		_	-	-	_	_	_	_	_	_	_	_	_	_	_		-	-	-
		_	 			_	 _	_	_	_			_	-	-	-	_	_	_	_	_	-	_	-	_	_	-	-	-	-
	 _	_	 			 	 _	_	_	_	_		_	_	_	_	_		_	_	_	_	_	_	_	_	-	-	-	_
	 		 			 	 	_		_			_	_	_	_	_		_		_	_	_	_	_	_	_	-	-	_
	 						 	_		_			_	_	_	_			_		_		_	_	_	_	_	_	_	_
	 						 							_													_	_	_	_
														_														_	_	_
																													1	
																													+	
																												\neg	+	\neg
								_			_								_								\neg	+	+	\neg
								_			_								_								\neg	\rightarrow	+	\neg
_				_	_	_		_	_	_	_	_	_	-	_	_	_	_	_		_	_	_	_			\neg	\rightarrow	+	-
								_		_	_		_	_	_	_	_		_		_	_	_	_		_		\rightarrow	+	_
								_		_	_			_	_	_	_		_		_	_	_	_		_	\neg	\rightarrow	+	\neg
								_		_	_			_	_		_		_		_	_	_			_	_	\rightarrow	\rightarrow	
								_		_				_					_		_		_				_	\rightarrow		
																											_	\rightarrow		
																											_			

ETB series Electric Rotary Table

ETB10/ETB30/ETB50

Tolerance in side

0.1

Warrant and Cautions

ETB series Electric Rotary Table

ETB10/ETB30/ETB50

			Product Index
			EDG
Small size			EDF
		Max. angles 330°	EDM
		Max. load 10N	EDP
		Motor size 20 🗆	EDQ
			EDX
			EDK
			EQX
			ETB
Middle size			Product Application Examples
ETR 30		Max. angles 330°	P-SERVO
	1. C.	Max. load 50N	Operation Instructions
		Motor size 25 ロ	

ETB 50

Max. angles 330° Max. load 150N Motor size 42 □

ETB series Electric Rotary Table

Electric Oscillation: ETB 30 Installation Method: Vertical Load Type: Inertia Load Ta Load Shape: 150mm x 80mm (rectangular) Oscillation Angle: 180°

Angular Acceleration • Deceleration ω: 1,000°/sec Angular Velocity ω: 420°/sec Load Mass m: 2.0kg Distance between the Centers of Gravity of Shafts H: 40mm

Seq 1 Moment of Inertia – Angular Acceleration/Deceleration

Formula

Example

Formula

Example

= 0.21N·m

Inertial Load: Ta

Effective Torque \geq Ts

Effective Torque \geq Tf × 1.5

Effective Torque ≥ Ta × 1.5

 $Ta \times 1.5 = I \times \omega \times 2/360 \times 1.5$

= 0.00802 × 1,000 × 0.0175 × 1.5

=0.00802kg·m

 $I=m \times (a^2 + b^2)/12 + m \times H^2$

 $I=2.0 \times (0.15^2 + 0.08^2)/12 + 2.0^2 \times 0.04$

- 1. Calculation of Moment of Inertia
- 2. Refer to the moment of inertia angular acceleration/deceleration graph for the related information. The adequate model should be selected depending on the moment of inertia and angular acceleration/ deceleration.

- 1. Load Types
- · Static Load: Ts
- · Resistive Load: Tf
- · Inertia Load: Ta

2. Refer to the effective torque - rotary speed graph for the related information. The controllable value in regard with velocity should be confirmed via the effective torque from rotary speed.

Seq 3 Allowable Load

- 1. Confirm the allowable load
- Radial Load
- Axial Load
- Torque

108

Formula Allowable Axial Load $\geq m \times 9.8$ Allowable Torque \geq m × 9.8 × H

Example Axial Load 2.0 × 9.8 = 19.8N < Allowable Load, OK Allowable Load $2.0 \times 9.8 \times 0.04$

=0.784N·m < Allowable Load, OK

200 300

Rotary Speed: $\omega(^{\circ}/s)$

400 500

ETB 30

0.030 Ε

0.020

0.015

0.005 0.000

1.4

1.2

1.0

0.8

0.6

0.4

0.2 0.0

Effective Torque: T (N·m)

100

ETB 30

1000 Angular Acceleration/ Deceleration: $\dot{\omega}(^{\circ}/s^2)$ 10000

of Inertia:ľ)kg 0.025

Moment 0.010

Seq 4 Oscillation Time

1. Calculation of Production Cycle Time (oscillation time)

Formula

Time of Angular Acceleration T1=ω/ω1 Time of Angular Deceleration T3=ω/ω2 Time of Constant Velocity T2= $\{\theta - 0.5 \times \omega \times (T1+T3)\}/\omega$ Time of Stability T=T1+T2+T3+T4

Example

- Time of Angular Acceleration T1=400/1,000=0.40sec
- Time of Angular Deceleration T3=400/1,000=0.40sec
- Time of Constant Velocity T2 ={180-0.5 × 400 ×(0.40+0.40)}/400=0.05sec
- Time Cycle T=T1+T2+T3+T4=0.40+0.05+0.40+0.2=1.05(sec)
| | | | | | Warrane and caudons |
|---|---------------------------------|---|--|-----------|---------------------------------|
| | Load Ty | уре | | | |
| Static Load: Ts | Resistiv | /e Load: Tf | Inertial Load: Ta | a 🛛 | Product Index |
| When only thrust force is necessary (gripping, etc.) | When gravity in reverse | direction overlaps friction | When a load with inertia is rev | /ersing | EDG |
| | <gravity reaction=""></gravity> | <friction reaction=""></friction> | <pre><reverse and="" are="" center="" load="" point="" same="" the=""></reverse></pre> | vertical> | |
| | | | | 1 | EDF |
| | Tmg | ↓ mg)
↓ | |) | EDM |
| ¥ | U . | | | , | EDP |
| Ts=F·L | Reverse Direction | Reverse Direction | Ta=I·ω·2/360 | | EDQ |
| Is: Static Load (N·m) | vvnen gravity is working | vvnen friction is working | (Ta=I·ω·0.0175) | | |
| L: Distance between the Center of | II: =m·g·∟ | lf: = μ·m·g·L | | | EDX |
| Oscillation and Gripping Position (m) | Tf: Resistive Load(N·m) |) | Ta: Inertia Load(N⋅m) ² | | EDK |
| | m: Load Mass(kg) | ··· • • • · · · · · · · | I: Moment of Inertia(kg m ²) | . | |
| | g: Gravitational Acceler | ation 9.8(m/s ²)
Center of Oscillation and | ω: Angular Acceleration/Dec
tion(°/sec) | elera- | EQX |
| | the Working Point of Gr | avity of Friction (m) | ω: Rotary Speed(°/sec) | | ETB |
| | μ: COF | | | | |
| | | | | | Product Application
Examples |
| I orque Required I=Is | I orque Requ | lired I=If × 1.5 | Iorque Required I=Ia > | < 1.5 | |
| • For Resistive Load \rightarrow gravity and friction | react with each other in | • For Non-resistive Load | \rightarrow gravity and friction do not re | eact | P-SERVO |
| reverse direction | | with each other in rever | rse direction | | Operation |
| EXT) If the reverse axis is nonzontal, the | reverse center and the | EX1) If the reverse axis | | | Instructions |
| EX2) If a load is aliding on the lathe | | EX2) If the reverse axis | s is norizontal, the reverse cent | er and | |
| XThe required torque is the sum of resis | tive load and inertia load | | ine same point | | |
| T=(Tf+Ta)x 15 | | T-To x 1 5 | | | |
| i (iii iu) i.o | | 1-1a * 1.5 | | | |

Moment of Inertia – Angular Acceleration/Deceleration

Effective Torque - Rotary Speed

Effective Torque: T (N·m)

500

Allowable Load, Displacement of Slider, Deviated Precision

Allowable Load

Displacement of Slider (reference)

The offset of the load on point A which is 100mm away from the reverse center.

Offset Precision: Offset of Oscillation at 180° (approximately)

Feature, Specification and Code of Order

Feature:

- Belt with Screw Transmission
- Closed-Loop Step Motor
- High Precision, Large Torque

The picture is for reference only. Please be subject to the specification table.

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ЕТВ
Product Application Examples

P-SERVO

Operation Instructions

Specification

Use occasion	Model	Rotating torque	Work load	Rotation angle	Angular speed	Drive mode	Ambient and fluid temperature (°C)	Operating humidity range	Motor size	Position repeatability	Backlash	load
	ETB 10	0.2	10						20 🗆			0.5
General environment	ETB 30	0.8	50	330	420	Worm screw+ Worm wheel+ Belt drive	5~40	35 ~ 85	25 口	0.05	±0.3	0.8
	ETB 50	7.0	150						42 🗆			1.5

Remark 1. Idling stroke: Reference value when correcting the error caused by reciprocating motion.

Remark 2. The speed and thrust will change base on the length of the wire, load weight and mounting conditions...etc.

If the length of the wire over 5m, the speed and thrust will reduce 10% per 5m.

Remark 3. If the load weight over the recommended value, the lifetime will shorter.

Code of Order

Allowable inertia graph, Rotating torque graph, Through-hole mounting, Screw-hole mounting

Mounting direction

Mounting direction

(08)

(03)

(10)

(18)

(22)

(01)

(10)

(05)(04)(16)(20)(17)

B-B(1:1)

(02)

() () ()

Internal structure, Components and Material list

ETB10, ETB30, ETB50

B

 (\bigcirc)

(12)

Components and Material list

No.	Name	Material	No.	Name	Material		
01	ETB 10 Body	Aluminum alloy(A6063)	14	Motor belt pulley	Aluminum alloy(A6061)		
02	ETB 10 Gear shaft	Alloy steel	15	Worm belt pulley	Aluminum alloy(A6061)		
03	ETB 10 Worm wheel	Alloy steel	16	Gear shaft bearing (large)	Bearing steel		
04	ETB 10 Bearing cap	Aluminum alloy(A6061)	17	Gear shaft bearing (small)	Bearing steel		
05	ETB 10 Dial scale	Aluminum alloy(A6061)	18	Outlet rubber	Rubber		
06	ETB 10 Motor stopper	Stainless	19	Pulley belt	Customized		
07	ETB 10 Stopper	Stainless	20	Blocking screw	Alloy steel		
08	ETB 10 Cabel stopper	Stainless	21	Stopper set screws	Alloy steel		
09	ETB 30 Screw stopper	Stainless	22	Cable stopper set screw	Alloy steel		
10	Closed loop motor 20	Customized	23	Motor pulley set screw	Alloy steel		
11	Dial set screw	Alloy steel	24	Worm pulley stop screw	Alloy steel		
12	Bearing cover set screw	Alloy steel	25	Worm Bearing	Bearing steel		
13	Motor stopper set screw	Alloy steel	26	Screw stopper set screw	Alloy steel		

Warrant and Caution
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO

Operation Instructions

External dimensions

ETB10

Unit:mm

Unit:mm

ETB series Electric Rotary Table

External dimensions

ETB30

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples

P-SERVO

Operation Instructions

External dimensions

ETB50

Unit:mm

2

30

Memo

																															-		
	-		_			-	_		-	_	_	_	_		_				_		-	_	_				_		-	-	+	+	-
						_	_	_	_	_	_	_	_				_	_	_	_	_	_	_	_	-	_	_	_	_	-	-	-	_
						_		_	_	_							_	_		_	_			_	_	_	_	_	_	_	_	_	_
															_														-		+	+	
-	-		_		_	-	_	-	-	_	_	_	_		_				_	-	-	_	_			-	_	-	-	-	+	-	-
					_	_	_	_	_	_	_	_	_				_	_	_	_	_	_	_	_	_	_	_	_	_	-	\rightarrow	-	_
						_		_	_	_							_	_		_	_			_	_	_		_	_	_	_	_	_
																															+	-	
			_	-		-		-					-		_				-		-	_		-	-		-	-	-	-	+	+	-
	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_		-	-	_	_	_	_	_	-	-	_	_	-	-	-	+	-	-
						_		_	_	_	_						_	_		_	_		_	_	_	_	_	_	_	_	\rightarrow	_	_
																															-		
			_										_		_				_										-	-	+	+	-
	_		_		_	-	_	-	_	_	_	_	_				-	-	_	-	_	_	_	-	-	-	_	-	-	-	+	-	-
						_		_	_	_	_	_					_	_	_	_	_		_	_	_	_	_	_	_	_	\rightarrow	_	_
						_		_	_									_		_						_		_	_	_	\rightarrow	_	_
																															+	+	
	-		_	_	_	-	_	-	-	_	_	_	_	_	_				_	-	-	_	_			-	_	-	-	-	+	-	-
						_	_	_	_	_	_	_	_				_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_
						_		_	_	_							_	_		_	_			_		_		_	_	_	\rightarrow	_	_
																														\neg	\uparrow	\uparrow	٦
								\rightarrow									\neg							\neg	\neg			\neg	+	\rightarrow	+	+	\neg
						_		\rightarrow	_	_		_					\rightarrow	-	_	_	_			\rightarrow	\rightarrow	_	_	\rightarrow	+	+	+	+	\neg
						_	_	-	_	_		_	_				-		_	_	_	_		\neg	\rightarrow	_	_	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_
																														$ \rightarrow$	\rightarrow	\rightarrow	
																													\neg	\neg	+	+	
						_	_	-	_	_		_	_						_		_	_				_	_	-	+	+	+	+	\neg
						_	_	_	_	_		_					-	_	_	_	_	_		-	-	_	_		\rightarrow	\rightarrow	+	+	_
						_														_						_			\rightarrow	\rightarrow	\rightarrow	\rightarrow	
																													\neg	\neg	+	+	
								-					_				\neg							\neg	-			-	+	+	+	+	\neg
						_		-	_	_	_						\rightarrow	_	_	_	_		_	-	\rightarrow	_	_	-	+	+	+	+	\neg
																																	- 1

P-SERVO Closed-loop stepping motor servo system

P-SERVO Closed-loop stepping motor servo system

Main specifications

Item	Content	Remark
Model	P-SERVO (FXB5040-ST2)	
Input powerveltage	DC 24V \pm 5%	Rated 4A, maximum 8A
input power voltage	$DC 48V \pm 10\%$	Rated 2A, maximum 6A
Rated output current	ST2 、 4A (o-peak)	
Maximum output current	ST2 、 6A (o-peak)	
Control subject motor	Encoder and two-phase stepping motor included	
Drive method	PWM chopper drive	
Control quadrant	Four quadrants	
Interface	Input: Digital input*5 Machine Sensor Input +LM, -LM, ORG Analog Input (Option)*1 Encoder Input (A, B, Z) Output: Digital output*4 Actuation output (for brake only)	Digital output/input can be assigned
Digital input content	/SERVO ON(Servo On) /RESET(Alarm Reset) /CONT MODE(Switch Control Mode) /START(Motor Start/Stop) SELECT PROGRAM(4 bit)	
Digital output content	/IN POSITION ALARM /TORQUE LIMIT	
LED display	Power, alarm and motor in rotation	Three types
Communication I/F	RS485, up to 32 nodes RS232C	MODBUS protocol, baud rate 19200 bps (default) (9600bps~115200bps)
	Position control mode	Positioning based on the command pulse (RS485/external pulse) Positioning based on RS232C/RS485 communication
Control method	Speed control mode	Digital command (resolution \pm 1/350 and above)
	Torque control mode	Digital command (resolution \pm 1/350 and above)
	Push control mode	Torque limit control in position and speed control
Adequate load inertia	Below 20 times of motor inertia	During position and speed control
Size of substrate shape	W 80 x D116 x H20	
Operating temperature/humidity	Below 0~50°C, 85%RH	Avoid condensation
Storage temperature	Below -20~85°C, 85%	Avoid condensation
Environmental gas	Avoid corrosive gas	

Main specifications

Position control specifications			EDF
	① Full time closed loop	Micro-stepping drive when the position mode is open.	EDM
Position mode (four modes)	 Dual mode 	The position precision of resolution for encoder will	EDP
rosition mode (rour modes)	 Full time open loop Open loop componentian 	be not be compensated.	EDQ
	(4) Open-toop compensation		FDX
Position precision	Resolution of Encoder: ± 1 Pulse		
Maximum frequency of command	• 900(Kpps)		EDK
	• A/B		EQX
Electronic gear	• A=1~10000		ETB
	• B=1~10000		Product Application Examples
Feedforward	0~100(%)		P-SERVO
Range of completed positioning (Inposition)	0~±1000		Operation Instructions
Abnormal scope of maximum count	±1~2147483647		
Speed control specifications			
Speed command	• Digital value (PPS)	The rotation number varies based on the encoder resolution.	
Speed control ratio	500:1 and above		
Direction of command rotation	• Digital input (DIR) • Parameter		
Start/Stop	• Digital input (START) • Parameter		
Acceleration and deceleration function	• n × Max. rpm × 0.125ms • Parameter n:0~10	No Acceleration or deceleration when n=0	
Torque control specifications			
Torque command	• Digital value (x 0.1%)		
Variable torque scope	0~100.0%	It is the rated torque of motor when the scope is at 100%.	
Speed limit	• Digital value (RPM)		
Direction of command rotation	• Digital input (DIR) • Parameter		
Start/Stop	• Digital input (START) • Parameter		

Warrant and Cautions Product Index

> EDG EDF EDM EDP EDQ EDX EDK EQX ETB

System configuration

RS485 Linear interpolation function

Filament options

The cable can be extended up to ${\bf 10}{\rm m}$

The motor size available	20mm
Motor extension cable	
Encoder extension cable	

Warrant and Cautions
Product Index

EDG

Example of product application

Input circuit diagram

System configuration

Interface type

Part no.	Use
CN1	Power and motor connector
CN2	Encoder connector
CN3	Interface connector
CN4	RS485 connector
CN5	RS232C connector
SW1	Switch for node ID setting
SW2	Switch for connecting the terminal
LED1	Power LED
LED2	Alarm LED
LED3	LED for motor in operation

Pin and definition

CN1 pin

Power & Motor (CN1)

Pin.	Signal
6	Motor / B(Orange)
5	Motor / B(Blue)
4	Motor / A(Yellow)
3	Motor / A(Red)
2	Power 0V
1	Power+(DC24V OR 48V)

— 6	
— 5	
— 4	
→ 3	
→ 2	
→ 1	

Connector:ETB45060 G100Z (ECE)

- Cable size:AWG24~AWG16(multi-core twisted pair line)
- Length of stripped wire:6~7mm

• Pay attention to the polarity of power.

Ð		þ	j
6			1

CN2 pin

Encoder (CN2)

Pin.	Signal	Pin.	Signal
1	CH A(White)	2	CH/A(Green)
3	CH B(Brown)	4	CH/B(Yellow)
5	CH Z(Blue)	6	CH/Z(Orange)
7	+5V (Red)	8	GND (Black)
9	(NC)	10	FG

- Cable size:AWG24~AWG1 8 (multi-core twisted pair line)
- Length of stripped wire:7~8mm

CN3 pin

Sensor & Interface (CN3)

Pin.	Signal	Pin.	Signal
1	+COM (+24V)	14	CW+
2	+LM	15	CW-
3	-LM	16	CCW+
4	ORIGIN	17	CCW-
5	IN1	18	Analog in(TBD)
6	IN2	19	AGND (TBD)
7	IN3	20	-
8	IN4	21	-
9	IN5	22	COMP OUT
10	OUT1	23	BRK+
11	OUT2	24	BRK-
12	OUT3	25	-COM
13	OUT4		

CN4 pin

RS485 (CN4)

Pin.	Signal	Pin.	Signal
1	(NC)	2	GND
3	A Input (RS485)	4	(NC)
5	GND	6	B Input (RS485)
7	(NC)	8	GND

CN5 pin

RS232C (CN5)

Pin.	Signal
1	RXD
2	TXD
3	GND

D-SUB 25P

• Pay attention to the polarity of power.

0	UT	11	N
pin8	pin1	pin8	pin1

Warrant and Caution
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Alarm function

Please check the alarm based on the number of flashes

When the alarm appears, the digital output "alarm" will become Active. The above mentioned "ALM" LED will flash. The light flashes every two seconds, as shown. After reaching the number of flashes that the alarm should appear, the light will be off for two seconds and starts to flash every two seconds again.

Number of flashes	Alarm	Cause	Cause Measures
		Overloading	Reduce the load
2	Cause Measures	The motor speed did not catch up with the c ommand during position control.	Force the maximum frequency of command pulse to stay below the maximum rotation of motor.
		Overloading	The motor speed did not catch up with the command pulse during position control.
3	Full count	Force the load to stay below the continuous rated torque.	Force the cyclic frequency of command pulse to stay below the rated motor speed. Force the curve angle of acceleration and deceleration to become flat.
4	Overspeed	An error occurred to the motor speed	Force the cyclic frequency of command pulse to stay below the maximum rotation of motor
5	Poor gain adjustment	 Motor hunting occurred due to improper adjustment. This could also happen when entering the command without acceleration or deceleration. 	Adjust the proportional gain (P) again to execute the acceleration and deceleration of command pulse.
6	Overvoltage	The internal power voltage increased due to regeneration.	Add a regenerator (option)
7	Abnormal initialization	The load has exceeded the maximum rated value of motor.	Please reduce the load
8	EEPROM Error	An error occurred to the EEPROM data	Perform repair
9	Abnormal position compensation during open circuit control	• Overloading • The moment of inertia is too large or the motor already has a problem.	Reduce the speed of position compensation and increase the tolerance of position compensation.

Memo

																												—		
 		_	_	_	_	_	 _	 _	_	_	_	_	 	_	_	_	_	_	_	_	_	_	_	_		-	-	-	-	_
			_				_																					_		_
 		-	_	_	_	_	-	_	-	_	-	_	 	-	-	_	-	-	_	_	-	-	-	_		-		-	-	-
														_							_	_						_	_	_
 		_	_	_	_	_	_	_	_	_	_	_	 	-	-	_	_	_	_	_	-	-	_	_			-	-	-	_
														_							_	_						_	_	_
 		-	_	_		_	_	-	-	_		_	 _		_	-	-	-		_		-	_	_	_	-		-	-	-
			_				_		_		_		 	_	_		_	_			_	_	_			_		_	_	_
	\vdash		-			_	-		_							_		_								\neg	+	\rightarrow	+	-
			_				_							_	_						_	_	_				\rightarrow	\rightarrow	\rightarrow	
 						_			_							_											\rightarrow	+	+	-
			_				_								_						_	_				\rightarrow	_	\rightarrow	\rightarrow	
 						_			_			_				_											-	-	-	-
 		_	_	_	_	_	_	_	_		_		 	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_
			_			_	_		_			_				_		_						_			-	-	-	-
 		_	_		_		 _	 _			_		 	_	_		_	_	_	_	_	_	_			_		_	_	_
												_															-	-		-
 		_	_		_		 _	 _			_		 	_	_		_	_	_	_	_	_	_			_		-	-	_
 												_																-		_
 		_	_	_	_	_	_	 _	_		_		 	-	_	_	_	_	_	_	_	_	_	_		-		-	-	_
																												\neg	\neg	
 		_	_		_		_				_			-	_		_				_	_				\rightarrow	+	\rightarrow	+	_
																													_	
																											\neg	\neg		
 	\vdash	_						_	_					-			_	_		_		_				\rightarrow	+	+	+	-
																											\neg	\neg	\neg	
 		_			_			_	_					-	_		_	_		_		_				\rightarrow	-+	+	\rightarrow	-
																												$ \rightarrow$	$ \downarrow$	
																												\neg		
 		_	_		_		_	_			_			-	_		_	_		_		_				\rightarrow	\rightarrow	+	\rightarrow	_
																												$ \rightarrow$	_	
																											1	\neg	1	
		_	_		_		_	_	_		_			-		_	_	_		_		_				\rightarrow	+	+	+	_
																											_	$ \downarrow$	_	
																											\neg	\rightarrow	\neg	
																											- I	- I	- I	

Steps

Step 1 – Select On-line Operation (link with device) after entering the screen

Step 2 – Press LINK when "ID and Communication" Dialog Box appears

FXB5040-ST S Off	W_ID 0 • fæt ID 0
Serial port settin	ug
Com Port	COM5 👻
Baud Rate	19200 -
Data Size	8 🗸
Parity	none 👻

Step 3 – Select ID option after entering Link
 Step 4 – Verify if knob number on lateral side of controller corresponds to that of SW-JD.

Step 5 – Select motor code

Step6 - Three options as picture show

Steps

Step 7 – Parameter Setting Interface

Comment	<< All >>					
	Addr	e: Symbol	Description	Range	Data	-
Group 01 :Position control paramet	▶ 0100h	РКр	Position loop gain		100	E
Group 03: Torque control paramete	0101h	PKv	Base integral time constant		20	
Group 04:Force (position mode), f Group 05:Common parameter	0102h	PTv	Base integral time constant		20	
Group 06 Input port assign	0103h	PKd	Speed feedback gain		300	
Group 07:Output port assign Group 08:Speed parameter of posit	0104h	PDv	Compensated derivative gain	$0 \sim 20$	5	
- Group 09:Zero return parameter	0105h	PKvp	Proportional gain for P control		5	
 Group 10:Network communication Group 15:Extended parameter 	0106h	Ff	Feed forward(%)	$0 \sim 100$	0	
croth to them we have been been	0107h	ErrCountClr	Clear deviation counter when servo OFF	$0 \sim 1$	0	
	0108h	FullCountValue	Full count alarm count value	$1 \sim 2147483647$	3000000	
	010Ak	InPositionZone	In position zone count value	$0 \sim 1000$	4	
	010Bł	ElectroGearNum	Electronic gear: numerator	1 ~ 10000	1	
	010Cł	ElectroGearDen	Electronic gear: denominator	1~ 10000	1	
	010DF	OpenModeSwitch	Pattern in position control	0~2	0	-
K F	Position loop g Positioning tim Too large settin	ain e can be shortened by se g value causes hunting.	tting larger value, but it also may cause overshoot.	Cons Moto Need must after to El	tantly changeable or control parameter power cycle. The pi the OFF and then Of writing parameters EP ROM.	ower N

Step 8 – Script	Setting Interface

so when a ide selecti	program mode m"should be "CONT MO	* "03: +TLS"," 04: - set to "1".	TLS" is us	ed as a program	n data parameter, th t to "ON"	ten Group 05:Con	nmon parameter "Mo	odeSwitch: A software :	switch of a	9
No	Mode	Displacement	Speed	Torque (x 0.1%)	Target port	Range L	Range H	Wait(msec)	Next	1
0	00:INC	0	100	500	0	0	0	0	-1	1
1	00:INC	0	100	500	0	0	0	0	-1	1
2	00:INC	0	100	500	0	0	0	0	-1	1
3	00:INC	0	100	500	0	0	0	0	-1	1
4	00:INC	0	100	500	0	0	0	0	-1	1
5	00:INC	0	100	500	0	0	0	0	-1	1
6	00:INC	0	100	500	0	0	0	0	-1	Î
7	00:INC	0	100	500	0	0	0	0	-1	1
8	00:INC	0	100	500	0	0	0	0	-1	1
9	00:INC	0	100	500	0	0	0	0	-1	1
10	00:INC	0	100	500	0	0	0	0	-1	1
11	00:INC	0	100	500	0	0	0	0	-1	1
12	00:INC	0	100	500	0	0	0	0	-1	1
13	00:INC	0	100	500	0	0	0	0	-1	1
14	00:INC	0	100	500	0	0	0	0	-1	1

Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Onevetion

Warrant and Cautions

Instructions

Steps

Step 9 – Manual Mode Interface

Servo LUN Alarm reset	Servo OM/OFF	1 SERVOON
Serve OFF Def Count Clear	Operation status	0: STOP
	Position control	,
'osition/force (position) control	T CALIBRICOMICT	I. ON
Iove Speed[%](O=LowSpeed)	In position	1:00
Move speed override	Speed control	
JOG	Zavo aroad	0. ROTATE
- + Continuous	Target speed	0: OFF
Emergency stop Slow stop	Torque/force contro	1
	Torque limit	0: OFF
	Commen	
tos ros	Common	0 N 1
Exec.	Alarm	U: No alarm
Signal search	Motor speed (rpm) Motor current(%)	2.9
Target inp.port 00: ORG rising edge 💌	Command position	0
	Encoder position	0
	Program No.	-1
Zero return (Speed setting = 901h)	Supply voltage(V)	24
Mode (Setting = 900h)		
12:-torque limit Exec.	Output	
	1 VELO_ZERO	3 TRQ_LMT
Force (position) control	2 ALARM	4 VELO_COIN
Iorque limit search		
- Direction + Direction	Input	
need/Tomue control	1 SERVO_ON	ORG
	2 ALARM_RST	+LM
shufsel room ruffsel room	3 START	LM
- Direction + Direction Stop	5 CONT MODE	∠ phase
leaching	STOOM THOOLE	-0
Step No. 0 Exec	Comm status	0 · No error
× LINU.	Comm. status	0.1000101
aight Interpolation		
SWID X_Index Start speed [pps]	Accel time[ms]	Move
	1	X_AXIS Y_AX

Steps

Step 10 – Select Servo ON when entering the screen to switch on the power. Click JOG+ and JOG- to observe if cylinder moves normally. After that, adjust required torque and rotation speed according to Parameter Setting and Zero instructions given below.

Servo ON Alarm reset	Servo ON/OFF	1: SERVO ON
Servo OFF Def Count Clear	Operation status	0: STOP
	Position control	
Position/force (position) control	In position	1.ON
Move Speed [%] (0=LowSpeed)	in position	1.04
Move speed override	Speed control	
JOG	Zero speed	0: ROTATE
- Continuous	Target speed	0: OFF
Emergency stop Slow stop	Torque/force contro	ol
	Torque limit	0: OFF
Abs. POS 0 Exec.	Common	
Set. POS 0 Exec.	Alarm	0: No alarm
Circulture L	Motor speed (rpm)	0
Signal search	Motor current(%)	2.9
Target inp.port 00: ORG rising edge 👻	Command position	0
- Direction + Direction	Encoder position	0
	Supply voltage(V)	24
Zero return (Speed setting = 901h)	Supply Yoldge(1)	
Mode (Setting = 900h)		
12:-torque limit Exec.	Output	
Forme (position) control	1 VELO_ZERO	3 TRQ_LMT
Torre (position) control	2 ALARM	4 VELO_COIN
- Direction + Direction		
- Different + Different	Input	
Sneed/Tomue control	1 SERVO_ON	ORG
States 100 100 Turtes 100 1	2 ALARM_RST	+LM
	3 START	-LM
- Direction + Direction Stop	4 VELO_DIR	🔄 🗠 phase
Teaching	S CONT_MODE	
Step No 0 Evec	Comm status	0 · No error
LACC.	COMMIN. STATUS	O. NO EIIOI
traight Interpolation	21 23 72320	Move
X_SWID X_Index Start speed[pps]	Accel time[ms]	🔽 X_Axis 🔽 Y_Axis
	1	

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO
Operation Instructions

Steps

Step 11 – Script Function

'hen a 'mode lso wh ode se r input	progr 2)". en a p lectior t port	am function is rogram mode 1″should be "CONT_MO	: used, Group 05:Comm "03: +TLS","04: - set to "1". DE: A selection of a co	non paramet TLS'' is us ntrol mode'	er "SelChangel ed as a progran ' should be se	Mode: A selection o n data parameter, th t to "ON" .	f a control mode) en Group 05:Con	by a control mode sele imon parameter "Mo	ection input" should b odeSwitch: A software :	e set to " switch of a
	No	Mode	Displacement distance	Speed (%)	Torque (x 0.1%)	Target port	Range L	Range H	Wait(msec)	Next
	0	00:INC	0	100	500	0	0	0	0	-1
	1	00:INC	0	100	500	0	0	0	0	-1
	2	00:INC	0	100	500	0	0	0	0	-1
	3	00:INC	0	100	500	0	0	0	0	-1
	4	00:INC	0	100	500	0	0	0	0	-1
	5	00:INC	0	100	500	0	0	0	0	-1
	6	00:INC	0	100	500	0	0	0	0	-1
	7	00:INC	0	100	500	0	0	0	0	-1
	8	00:INC	0	100	500	0	0	0	0	-1
	9	00:INC	0	100	500	0	0	0	0	-1
	10	00:INC	0	100	500	0	0	0	0	-1
	11	00:INC	0	100	500	0	0	0	0	-1
	12	00:INC	0	100	500	0	0	0	0	-1
	13	00:INC	0	100	500	0	0	0	0	-1
	14	00:INC	0	100	500	0	0	0	0	-1

Script Mode:

- 0: Relative Position
- 1: Absolute Position
- 2 : Homing
- 3 : Positive Torque Detection
- 4 : Negative Torque Detection
- **5** : Positive Signal Detection
- **6** :Negative Signal Detection
- 7: osition Setting
- 8 : Clear Offset Count
- 9 : ommon Output
- 10 : Common Output (Coordinates comparison large)
- 11 : Common Output (Coordinates comparison small)
- 12 :Set Counter
- 13 :Count result -1; if 0, next step; if not 0, execute line number specified in the next step.

CHELIC.

Operation Instructions

Steps

Step 12 – Script Functions

Script Mode: there are 14 (0-13) modes that can be adjusted according to customer needs.

- 1-1 Mode: Relevant mode can be set for controlling electric cylinder (13 settings as indicated in the red frame above.)
- 1-2 Stroke/Angle: Enter a position within the adjustable range of that specification.
- 1-3 Speed: Adjust speed based on corresponding spec (%).
- 1-4 Torque: Adjust speed based on corresponding spec (0.1%).
- 1-5 Subject Port: Combined with mode setting, allows to output to an external controller, such as PLC.
- 1-6 Range-L: Combined with Item 7, allows range setting.
- 1-7 Range-H: Combined with Item 6, allows range setting.
- 1-8 Wait (ms): Waiting time after executing that instruction line, 1000(ms) = 1(s) Second

1-9 Next Step: Specifies action of any other line after executing that instruction line; -1 for stand still.

- 1. Allows to set Stroke/ Angle, Speed and Torque after mode selection.
- 2. Setting of "Next Step" cell is a Jump Function; as shown in the above figure, after completing Line No.0 action, the next step is 1, then switch to Line No.1 action, and so on. This function can be used for automatic circulation: when -1 is set for the next step, no action will be executed.
 - 3

Step 13 - Homing (Click Input to Ram or Input to ROM after modification)

► Homing Speed: adjustable (1-100%)

Homing Offset: used for fine-tuning offset of one-direction gear gap

► Homing Torque Limit: Sets torque value according to user requirement; when carrying out homing, reaching the set torque value indicates the completion of homing.

► Homing Position Setting: After completing homing and compensating offset of one-direction gear gap, the current position is set as Home.

Comment	<< Group 09	Zero return parameter	>>		
-All	Ad	dre: Symbol	Description	Range	Data
- Group U1:Position control paramet - Group 02:Speed, force (speed mod	• 090	Ih OrgMode			
- Group 03: Torque control paramete	090	1h OrgSpeed	Homing sequence speed(%)	1~ 100	20
Group 04: Force (position mode), f Group 05: Common parameter	090	2h OrgOffset	Offset of homing sequence		1500
- Group 06:Input port assign	090	4h OrgData	Data of homing sequence		0
Group 07:Output port assign	090	6h OrgTrqLimit	Torque limit of homing sequence(×0.1%)	$0 \sim 1000$	600
	1 ORG: Di 2 ORG-2: L	tect the +edge of ORG	signal. (Default) f 2-base after the + edge of ORG signal has been detected	c	onstantly changeable

Warrant and Cautions
Product Index
EDG
EDF
EDM
EDP
EDQ
EDX
EDK
EQX
ETB
Product Application Examples
P-SERVO

Steps

Step 14 – Type 05 of Parameter Table, Common Parameters:

For switching over to automatic and continuous control: alter 0502h to 2 and 0503h to 1, click input to Ram and input to Rom; this allows to one-key operation by clicking START under Manual Mode. To stop activation, just release START). (Note: to alter parameters in orange color, you need to re-start the power).

ment All - Group 01 Position control paramet - Group 02 Speed, force (speed mod - Group 03 Torque control paramete - Group 04 Porce (position mode), f	or Group OF Co					
All Group 01 Position control paramet Group 02 Speed, force (speed mod Group 03:Torque control paramete Group 04 Force (position mode), f	~~ 010 (\$ UD:CO)	mmon parameter >>				
	Addres	Symbol	Description		Range	Data
Group 03:Torque control paramete Group 04:Force (position mode), f	• 0500h	MaxTrqRate	Maximum torque valu	ie(×0.1%)	0~1000	1000
Complete Com	0501h	FullTrqTime	Loop error detection	time(msec)	500 ~ 10000	1000
Comp up common parameter	0502h	SelChangeMode	Selection of control r	mode by external control	0~5	2
- Group Ub Input port assign Group 07:Output port assign	0503h	ModeSwitch	Software switch to s	elect internal digital modes	0~1	1
Group 08 Speed parameter of posi	0504h	ProContSwitch	Software switch to s	elect internal digital P/PI controls	0~1	U
- Group 09 Zero return parameter - Group 10 Network communication	0505h	BrakeOffDelay	Timing of "brake off		0~100	100
- Group 15:Extended parameter	0505h	AutoPfDetect	Activation of initializ-	ation	0~2	0
	0500h	Colled	Select LCD(IND) india		0~3	0
	05000	Dericeu	Jerie level of think	cation	0 - 1	0
	050061	DryLogicLmtr DryLogicLmtM	Logic level of +limit i	input signal	0.01	0
	05004	DryLogicLmtM David spin LastCanad	Set the type of store	input sienal	0-0	0
	05054	SelDePerke	Activation of regener	onig by limit input signal	0.02	0
	When set to 100	Sering Drake	Horivation of regener	duve brake wien servo is or r	0 - 1	U
	(Default = 1000)				Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma M	instantly changeable otor control parameter ed power cycle. The p ust be OFF and then C ter writing parameters EEP ROM.
manaa operation	Contra	ninoueor	ee (position	mode)		1
Move				Status		
Same ON		() laurer	ant]	Same ON DEE	1. SED	VOON
Servo ON		Alarm n	eset	Servo UN/UFF	I. SEK	NO ON
Servo OFF		Def.Count	Clear	Operation status	U: STO	r
Desition Roma for 11	(1		Position control		
Move Speed [%](0=L4	owSpeed)	10	A A	In position	1: ON	
Move speed overri	de			Speed control		
100	50			Spoor connor		
JOG				Zero speed	0: RO1	TATE
	1		entimuous	Taxant care J	0.055	
	т			Target speed	0. OFF	
Emergency stop		Slow str		Torque/force cont	rol	
Line geney stop				Tourse limit	0.055	0
Rel. POS	0 🌲		+	101d ne mini	0.011	
Abs. POS	0 📥	Exec.		Common		
Set BOS	0	E			0. No	1
Set PUS	0	Exec.		Alarm	U: No a	darm
				Motor speed (rpm)	0	
Signal search				Motor current(@)	29	
Townships and To	on ond				0	
larget mp.port	JU: ORG 1	nsing ed ge		Command position	U U	
	· D: - 0			Encoder position	0	
- Direction	+ Directi	on		Program No	-1	
				Gunna have have (Th	24	
Zem return (Speed	setting - (9015)		Suppry Vonage(V)	44	
Sero return (speed	sound = 2	7011i)				
Mode (Setting = 90)	Jh)					
12:-tomue limit	1000		Evec	Output		
Tz. orque mint		l	EACC.	And the second second		
_				1 VELO ZERO	3 T	RQ LMT
Force (position) cor	ntrol			2 ALARM	AV	FLO COM
Tomus limit month				2 manna	L 4 1	ano_con
Torque mini seatch						
- Direction	+ Directio	m		Input		
				A REDUC ON		
Sneed/Tomus control				1 SERVO_ON	ORG	J
special rold as couldo.	1	1001		2 ALARM_RST	+LM	1
a lana 100	Trq	%] 100	v	3 START	-LM	2
Spd[%] 100	-			A VELO DIR	Zph	ase
Spd[%] 100	and the second se	Stop		A CONT MODE	- 12 pi	0.00
Spd[%] 100 - Direction +	Direction			5 CONT_MODE		
Spd[%] 100	Direction					
Spd[%] 100 - Teaching	Direction			-		
Spd[%] 100 - Direction + Teaching	Direction	-	1		-	
Spd[%] 100 ▲ - Direction + 1 Teaching Step No.	Direction	Exec.]	Comm. status	0 : No e:	nor
Spd[%] 100 ▲ - Direction + : Teaching Step No.	Ourection	Exec.)	Comm. status	0 : No e:	nor
Spd[%] 100 - Direction + 1 Teaching Step No. Straight Interpolation	Urection 0	Exec.)	Comm. status	0 : No e: Move	nor
Spd[%] 100 - - Direction + 1 Teaching Step No	Durection 0	Exec.] speed[pps]	Comm. status Accel time[ms]	0 : No e: Move	nor Axis 🔽 🗸 🌢
Spd[%] 100 - Direction + : Teaching Step No. Streight Interpolation X_SWID X_Inde: 0 •	Urrection 0	Exec.	speed[pps] 100.0 🏹	Comm. status Accel time[ms]	O : No e: Move	nor Axis 👽 Y_A
Spd[%] 100 - - Direction + : Teaching Step No. Straight Interpolation X_SWID X_Index 0 - V SWID V Laboration	virection 0	Start :	speed[pps] 100.0	Comm. status Accel time[ms]	O : No e: Move VX_	mor Axis 👽 Y_A Exec.
Spd[%] 100 - Direction + 1 Teaching Step No. Straight Interpolation X_SWID X_Inde: 0 Y_SWID Y_Inde:	virection 0	Exec. Start : Max :	speed[pps] 100.0 - speed[pps]	Comm. status Accel time[ms] 1 S_Curve[%]	O:Noe	nor Axis 📝 Y_A Exec.

Specification Selection Table

C	HELIC Linea	r Motor	Requirem	ent Spe	cificati	ion Survey S	heet	
Company Name			Date			Filled-in By		
Add.						email:		
TEL.				Fax	:			
	Load (kg): Speed (mm/s): Repetition Pro Stroke (mm): Acceleration(m	e cision (m mm/s ²):	m):	0.002 [Movement Circulation Time(s): $\Box \pm 0.005$ Stop Time (s):			
Requirements:			Horizo	ontal Instal	lation	Wall-ı	nount Install	ation
	Allowable load torque (mm)		• B	• A • C]			
			А	В	С	А	В	С
	🗆 Layout					Dra	wing	
	Viewel	🗆 Posi	tion Test					
	application		ement Test					
Application	🗆 Process M	achine						
Аррисаціон	🗆 Screw Use	2						
	□ Spot glue	use						
	Other							
Environment of Use	🗆 General Ei	nvironme	ent		-			
Equipment	🗌 For massiv	ve produ	ction	🗌 For	testing			
Remark								

TAIWAN CHELIC CO., LTD. www.chelic.com

TAIWAN CHELIC CO., LTD.

SHANGHAI CHELIC PNEUMATIC CORP.

SHENZHEN

SHENZHEN CHELIC PNEUMATIC CORP.

TAIWAN CHELIC CO., LTD.

No.21, Guifeng St., Taishan Dist., New Taipei City 243, Taiwan TEL:+886-2-2904-1235 FAX:+886-2-2904-1706 E-mail:chelic@chelic.com

SHANGHAI CHELIC PNEUMATIC Co.

No.467 Caonong Road,Xinqiao Town, Songjiang District, Shanghai TEL:+86-21-6025-1288 FAX:+86-21-6025-1265 E-mail:sha@chelic.com

SHENZHEN CHELIC PNEUMATIC Co.

RD, Floor B Block, The 12th Building, B Street Shangcun Liantang Industry Gongming Town, New Guangming District, Shenzhen City, Guangdong Province .

TEL:+86-755-3369-9188 FAX:+86-755-3369-9112 E-mail:szx@chelic.com

 $\langle \! \! \bigtriangledown \! \! \rangle$ The specification are subject to change without advance notice.